抚州哪里有做企业网站的公司/大数据比较好的培训机构

抚州哪里有做企业网站的公司,大数据比较好的培训机构,wordpress 网页禁止复制,济南联通网站备案目录 一、引言 二、CGC(Customized Gate Control,定制门控网络) 2.1 技术原理 2.2 技术优缺点 2.3 业务代码实践 2.3.1 业务场景与建模 2.3.2 模型代码实现 2.3.3 模型训练与推理测试 2.3.4 打印模型结构 三、总结 一、引言 上一…

目录

一、引言

二、CGC(Customized Gate Control,定制门控网络)

2.1 技术原理

2.2 技术优缺点

2.3 业务代码实践

2.3.1 业务场景与建模

2.3.2 模型代码实现

2.3.3 模型训练与推理测试

2.3.4 打印模型结构 

三、总结


一、引言

上一篇我们讲了MMoE多任务网络,通过对每一个任务塔建立Gate门控,对专家网络进行加权平均,Gate门控起到了对多个共享专家重要度筛选的作用。在每轮反向传播时,每个任务tower分别更新对应Gate的参数,以及共享专家的参数。模型主要起到了多目标任务平衡的作用。

今天我们重点将CGC(Customized Gate Control)定制门控网络,核心思想是在MMoE基础上,为每一个任务tower定制独享专家,实用任务独享专家与共享专家共同决定任务Tower的输入,相比于MMoE仅用Gate门控表征任务Tower的方法,CGC引入独享专家,对任务表征更加全面,又通过共享专家保证关联性。

二、CGC(Customized Gate Control,定制门控网络)

2.1 技术原理

CGC(Customized Gate Control)全称为定制门控网络,主要由多个任务塔、对应多组独享专家网络,对应多个门控网络以及一组共享专家网络,专家网络组内可以包含多个专家MLP。核心原理:样本input分别输入共享专家MLP、独立专家MLP、独立专家对应门控网络,门控网络输出为经过softmax的权重分布,维度对应共享专家数num_shared_experts和独立专家数num_task_experts的和,通过对独立专家输出和共享专家输出采用Gate门控加权平均后, 输入到对应的任务Tower。每个任务Tower输入自己对应的独享专家、共享专家、门控加权平均的输入。反向传播时,每个任务更新自己独享专家、独享门控以及共享专家的参数。

  • 共享专家网络:样本数据分别输入num_shared_experts个专家网络进行推理,每个共享专家网络实际上是一个多层感知机(MLP),输入维度为x,输出维度为output_experts_dim。
  • 独享专家网络:样本数据分别输入num_task_experts个专家网络进行推理,每个共享专家网络实际上是一个多层感知机(MLP),输入维度为x,输出维度为output_experts_dim。
  • 门控网络:样本数据输出各自任务对应的门控网络,每个门控网络可以是一个多层感知机,也可以是一个双层的交叉,主要是为了输出专家网络的加权平均权重。
  • 任务网络:对于每一个Task,将各自对应num_shared_experts个共享专家和num_task_experts个独立专家,基于对应gate门控网络的softmax加权平均,作为各自Task的输入,所有Task的输入统一维度均为output_experts_dim。

2.2 技术优缺点

相较于MMoE网络,CGC为每一个任务tower定制独享专家,实用任务独享专家与共享专家共同决定任务Tower的输入,相比于MMoE仅用Gate门控表征任务Tower的方法,CGC引入独享专家,对任务表征更加全面,又通过共享专家保证关联性。

优点:

  • 切断任务tower与其他任务独享专家的联系,使得独享专家能够更专注的学习本任务内的知识与信息。比如切断互动塔与点击专家的联系,只和互动专家同时迭代,让互动目标的学习更加纯粹。
  • 独享专家只受对应任务梯度的影响,不受其他任务梯度的影响,而共享专家可以被多个任务梯度同时更新。
  • 本质上,CGC就是在MMoE上新增了独享专家,MMoE仅有共享专家。

缺点: 

  • 相较于PLE、SNR等,没有学习到专家与专家之间的相互关系,层级堆叠不够。
  • 相较于DeepSeekMoE的路由方法,CGC还是过于定制化与单一话,专家组合不足。

2.3 业务代码实践

2.3.1 业务场景与建模

我们还是以小红书推荐场景为例,针对一个视频,用户可以点红心(互动),也可以点击视频进行播放(点击),针对互动和点击两个目标进行多目标建模

我们构建一个100维特征输入,1组共享专家网络(含2个共享专家),2组独享专家网络(各含2个独享专家),2个门控,2个任务塔的CGC网络,用于建模多目标学习问题,模型架构图如下:

​​​​​​​​​​​​​​

如架构图所示,其中有几个注意的点:

  • num_shared_experts+num_task_expertsGate的维度等于共享专家的维度加上任务独享专家的维度。
  • output_experts_dim:共享专家、独享专家网络的输出维度和task网络的输入维度相同,task网络承接的是专家网络各维度的加权平均值,experts网络与task网络是直接对应关系。
  • Softmax:Gate门控网络对共享专家和独享专家的偏好权重采用Softmax归一化,保证专家网络加权平均后值域相同

2.3.2 模型代码实现

基于pytorch,实现上述CGC网络架构,如下:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDatasetclass CGCModel(nn.Module):def __init__(self, input_dim, experts_hidden1_dim, experts_hidden2_dim, output_experts_dim, task_hidden1_dim, task_hidden2_dim, output_task1_dim, output_task2_dim, gate_hidden1_dim, gate_hidden2_dim, num_shared_experts, num_task_experts):super(CGCModel, self).__init__()# 初始化函数外使用初始化变量需要赋值,否则默认使用全局变量# 初始化函数内使用初始化变量不需要赋值 self.num_shared_experts = num_shared_expertsself.num_task_experts = num_task_expertsself.output_experts_dim = output_experts_dim# 初始化共享专家self.shared_experts_2 = nn.ModuleList([nn.Sequential(nn.Linear(input_dim, experts_hidden1_dim),nn.ReLU(),nn.Linear(experts_hidden1_dim, experts_hidden2_dim),nn.ReLU(),nn.Linear(experts_hidden2_dim, output_experts_dim),nn.ReLU()) for _ in range(num_shared_experts)])# 初始化任务1专家self.task1_experts_2 = nn.ModuleList([nn.Sequential(nn.Linear(input_dim, experts_hidden1_dim),nn.ReLU(),nn.Linear(experts_hidden1_dim, experts_hidden2_dim),nn.ReLU(),nn.Linear(experts_hidden2_dim, output_experts_dim),nn.ReLU()) for _ in range(num_task_experts)])# 初始化任务2专家self.task2_experts_2 = nn.ModuleList([nn.Sequential(nn.Linear(input_dim, experts_hidden1_dim),nn.ReLU(),nn.Linear(experts_hidden1_dim, experts_hidden2_dim),nn.ReLU(),nn.Linear(experts_hidden2_dim, output_experts_dim),nn.ReLU()) for _ in range(num_task_experts)])# 初始化门控网络任务1self.gating1_network_2 = nn.Sequential(nn.Linear(input_dim, gate_hidden1_dim),nn.ReLU(),nn.Linear(gate_hidden1_dim, gate_hidden2_dim),nn.ReLU(),nn.Linear(gate_hidden2_dim, num_shared_experts+num_task_experts),nn.Softmax(dim=1))# 初始化门控网络任务2self.gating2_network_2 = nn.Sequential(nn.Linear(input_dim, gate_hidden1_dim),nn.ReLU(),nn.Linear(gate_hidden1_dim, gate_hidden2_dim),nn.ReLU(),nn.Linear(gate_hidden2_dim, num_shared_experts+num_task_experts),nn.Softmax(dim=1))# 定义任务1的输出层self.task1_head = nn.Sequential(nn.Linear(output_experts_dim, task_hidden1_dim),nn.ReLU(),nn.Linear(task_hidden1_dim, task_hidden2_dim),nn.ReLU(),nn.Linear(task_hidden2_dim, output_task1_dim),nn.Sigmoid()) # 定义任务2的输出层self.task2_head = nn.Sequential(nn.Linear(output_experts_dim, task_hidden1_dim),nn.ReLU(),nn.Linear(task_hidden1_dim, task_hidden2_dim),nn.ReLU(),nn.Linear(task_hidden2_dim, output_task2_dim),nn.Sigmoid()) def forward(self, x):gates1 = self.gating1_network_2(x)gates2 = self.gating2_network_2(x)#定义专家网络输出作为任务塔输入batch_size, _ = x.shapetask1_inputs = torch.zeros(batch_size, self.output_experts_dim)task2_inputs = torch.zeros(batch_size, self.output_experts_dim)for i in range(self.num_shared_experts):task1_inputs += self.shared_experts_2[i](x) * gates1[:, i].unsqueeze(1) + self.task1_experts_2[i](x) * gates1[:, i+self.num_shared_experts].unsqueeze(1)task2_inputs += self.shared_experts_2[i](x) * gates2[:, i].unsqueeze(1) + self.task2_experts_2[i](x) * gates2[:, i+self.num_shared_experts].unsqueeze(1)task1_outputs = self.task1_head(task1_inputs)task2_outputs = self.task2_head(task2_inputs)return task1_outputs, task2_outputs# 实例化模型对象
experts_hidden1_dim = 64
experts_hidden2_dim = 32
output_experts_dim = 16
gate_hidden1_dim = 16
gate_hidden2_dim = 8
task_hidden1_dim = 32
task_hidden2_dim = 16
output_task1_dim = 1
output_task2_dim = 1
num_shared_experts = 2
num_task_experts = 2# 构造虚拟样本数据
torch.manual_seed(42)  # 设置随机种子以保证结果可重复
input_dim = 100
num_samples = 1024
X_train = torch.randint(0, 2, (num_samples, input_dim)).float()
y_train_task1 = torch.rand(num_samples, output_task1_dim)  # 假设任务1的输出维度为1
y_train_task2 = torch.rand(num_samples, output_task2_dim)  # 假设任务2的输出维度为1# 创建数据加载器
train_dataset = TensorDataset(X_train, y_train_task1, y_train_task2)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)model = CGCModel(input_dim, experts_hidden1_dim, experts_hidden2_dim, output_experts_dim, task_hidden1_dim, task_hidden2_dim, output_task1_dim, output_task2_dim, gate_hidden1_dim, gate_hidden2_dim, num_shared_experts, num_task_experts)# 定义损失函数和优化器
criterion_task1 = nn.MSELoss()
criterion_task2 = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练循环
num_epochs = 100
for epoch in range(num_epochs):model.train()running_loss = 0.0for batch_idx, (X_batch, y_task1_batch, y_task2_batch) in enumerate(train_loader):# 前向传播: 获取预测值#print(batch_idx, X_batch )#print(f'Epoch [{epoch+1}/{num_epochs}-{batch_idx}], Loss: {running_loss/len(train_loader):.4f}')outputs_task1, outputs_task2 = model(X_batch)# 计算每个任务的损失loss_task1 = criterion_task1(outputs_task1, y_task1_batch)loss_task2 = criterion_task2(outputs_task2, y_task2_batch)total_loss = loss_task1 + loss_task2# 反向传播和优化optimizer.zero_grad()total_loss.backward()optimizer.step()running_loss += total_loss.item()if epoch % 10 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}')print(model)
#for param_tensor in model.state_dict():
#    print(param_tensor, "\t", model.state_dict()[param_tensor].size())
# 模型预测
model.eval()
with torch.no_grad():test_input = torch.randint(0, 2, (1, input_dim)).float()  # 构造一个测试样本pred_task1, pred_task2 = model(test_input)print(f'互动目标预测结果: {pred_task1}')print(f'点击目标预测结果: {pred_task2}')

相比于上一篇MMoE中的代码,CGC复杂了很多,新增了2组独享专家,且在门控与独享、共享专家加权平均计算的时候需要进行处理,很容易出问题。

2.3.3 模型训练与推理测试

运行上述代码,模型启动训练,Loss逐渐收敛,测试结果如下:

2.3.4 打印模型结构 ​​​​​​​

三、总结

本文详细介绍了CGC多任务模型的算法原理、算法优势,他是下一篇PLE多层多任务模型的基础,并以小红书业务场景为例,构建CGC网络结构并使用pytorch代码实现对应的网络结构、训练流程。相比于MMoE,CGC新增独享专家网络,通过gate门控的串联,切断任务Tower与其他任务独享专家的联系,使得独享专家能够更专注的学习本任务内的知识与信息。

如果您还有时间,欢迎阅读本专栏的其他文章:

【深度学习】多目标融合算法(一):样本Loss加权(Sample Loss Reweight)

【深度学习】多目标融合算法(二):底部共享多任务模型(Shared-Bottom Multi-task Model) ​​​​​​​

【深度学习】多目标融合算法(三):混合专家网络MOE(Mixture-of-Experts) 

 【深度学习】多目标融合算法(四):多门混合专家网络MMOE(Multi-gate Mixture-of-Experts)​​​​​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/73852.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在线pdf处理网站合集

1、PDF24 Tools:https://tools.pdf24.org/zh/ 2、PDF派:https://www.pdfpai.com/ 3、ALL TO ALL:https://www.alltoall.net/ 4、CleverPDF:https://www.cleverpdf.com/cn 5、Doc Small:https://docsmall.com/ 6、Aconv…

网络编程-实现客户端通信

#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <sys/socket.h> #include <netinet/in.h> #include <sys/select.h>#define MAX_CLIENTS 2 // 最大客户端连接数 #define BUFFER_SI…

力扣100二刷——图论、回溯

第二次刷题不在idea写代码&#xff0c;而是直接在leetcode网站上写&#xff0c;“逼”自己掌握常用的函数。 标志掌握程度解释办法⭐Fully 完全掌握看到题目就有思路&#xff0c;编程也很流利⭐⭐Basically 基本掌握需要稍作思考&#xff0c;或者看到提示方法后能解答⭐⭐⭐Sl…

【大模型实战篇】多模态推理模型Skywork-R1V

1. 背景介绍 近期昆仑万维开源的Skywork R1V模型&#xff0c;是基于InternViT-6B-448px-V2_5以及deepseek-ai/DeepSeek-R1-Distill-Qwen-32B 通过强化学习得到。当然语言模型也可以切换成QwQ-32B。因此该模型最终的参数量大小为38B。 该模型具备多模态推理能力&#xf…

识别并脱敏上传到deepseek/chatgpt的文本文件中的护照信息

本文将介绍一种简单高效的方法解决用户在上传文件到DeepSeek、ChatGPT&#xff0c;文心一言&#xff0c;AI等大语言模型平台过程中的护照号识别和脱敏问题。 DeepSeek、ChatGPT&#xff0c;Qwen&#xff0c;Claude等AI平台工具快速的被接受和使用&#xff0c;用户每天上传的文…

数据驱动进化:AI Agent如何重构手机交互范式?

如果说AIGC拉开了内容生成的序幕&#xff0c;那么AI Agent则标志着AI从“工具”向“助手”的跨越式进化。它不再是简单的问答机器&#xff0c;而是一个能够感知环境、规划任务并自主执行的智能体&#xff0c;更像是虚拟世界中的“全能员工”。 正如行业所热议的&#xff1a;“大…

【AI News | 20250319】每日AI进展

AI Repos 1、XianyuAutoAgent 实现了 24 小时自动化值守的 AI 智能客服系统&#xff0c;支持多专家协同决策、智能议价和上下文感知对话&#xff0c;让我们店铺管理更轻松。主要功能&#xff1a; 智能对话引擎&#xff0c;支持上下文感知和专家路由阶梯降价策略&#xff0c;自…

C语言自定义类型【结构体】详解,【结构体内存怎么计算】 详解 【热门考点】:结构体内存对齐

引言 详细讲解什么是结构体&#xff0c;结构体的运用&#xff0c; 详细介绍了结构体在内存中占几个字节的计算。 【热门考点】&#xff1a;结构体内存对齐 介绍了&#xff1a;结构体传参 一、什么是结构体&#xff1f; 结构是⼀些值的集合&#xff0c;这些值称为成员变量。结构…

Apache DolphinScheduler:一个可视化大数据工作流调度平台

Apache DolphinScheduler&#xff08;海豚调度&#xff09;是一个分布式易扩展的可视化工作流任务调度开源系统&#xff0c;适用于企业级场景&#xff0c;提供了一个可视化操作任务、工作流和全生命周期数据处理过程的解决方案。 Apache DolphinScheduler 旨在解决复杂的大数据…

[蓝桥杯 2023 省 B] 飞机降落

[蓝桥杯 2023 省 B] 飞机降落 题目描述 N N N 架飞机准备降落到某个只有一条跑道的机场。其中第 i i i 架飞机在 T i T_{i} Ti​ 时刻到达机场上空&#xff0c;到达时它的剩余油料还可以继续盘旋 D i D_{i} Di​ 个单位时间&#xff0c;即它最早可以于 T i T_{i} Ti​ 时刻…

使用Trae 生成的React版的贪吃蛇

使用Trae 生成的React版的贪吃蛇 首先你想用这个贪吃蛇&#xff0c;你需要先安装Trae Trae 官方地址 他有两种模式 chat builder 我使用的是builder模式,虽然是Alpha.还是可以用。 接下来就是按着需求傻瓜式的操作生成代码 他生成的代码不完全正确&#xff0c;比如没有引入…

rust学习笔记17-异常处理

今天聊聊rust中异常错误处理 1. 基础类型&#xff1a;Result 和 Option&#xff0c;之前判断空指针就用到过 Option<T> 用途&#xff1a;表示值可能存在&#xff08;Some(T)&#xff09;或不存在&#xff08;None&#xff09;&#xff0c;适用于无需错误信息的场景。 f…

Python:单继承方法的重写

继承&#xff1a;让类和类之间转变为父子关系&#xff0c;子类默认继承父类的属性和方法 单继承&#xff1a; class Person:def eat(self):print("eat")def sing(self):print("sing") class Girl(Person):pass#占位符&#xff0c;代码里面类下面不写任何东…

[免费]直接整篇翻译pdf工具-支持多种语言

<闲来没事写篇博客填补中文知识库漏洞> 如题&#xff0c;[免费][本地]工具基于开源仓库&#xff1a; 工具 是python&#xff01;太好了&#xff0c;所以各个平台都可以&#xff0c;我这里基于windows. 1. 先把github代码下载下来&#xff1a; git clone https://githu…

UI设计中的用户反馈机制:提升交互体验的关键

hello宝子们...我们是艾斯视觉擅长ui设计和前端数字孪生、大数据、三维建模、三维动画10年经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩! 在数字化产品泛滥的今天&#xff0c;用户与界面的每一次交互都在无形中塑造着他们对产品的认知。一个…

Hessian 矩阵是什么

Hessian 矩阵是什么 目录 Hessian 矩阵是什么Hessian 矩阵的性质及举例说明**1. 对称性****2. 正定性决定极值类型****特征值为 2(正),因此原点 ( 0 , 0 ) (0, 0) (0,0) 是极小值点。****3. 牛顿法中的应用****4. 特征值与曲率方向****5. 机器学习中的实际意义**一、定义与…

GPU视频编解码:Jetson VPI+multimedia_api视频编解码入门(一)

目录 一.Pipline与工具栈 二.硬件设备概况 三.GPU视频编解码框架 四.VPI编译使用实例 五. jetson_multimedia_api编译使用实例 一.Pipline与工具栈 二.硬件设备概况 三.GPU视频编解码框架 jetson设备目前不支持VPF框架&#xff0c;关于VPF的使用我在下节PC段使用X86进行安…

《深入理解AOP编程:从基础概念到Spring实现》

AOP编程 AOP(Aspect Oriented Programing) 面向切面编程 Spring动态代理开发 以切面为基本单位的程序开发&#xff0c;通过切脉你间的彼此协同&#xff0c;相互调用&#xff0c;完成程序构建 切面切入点额外功能 OOP(Object Oriented Programing)面向对象编程 java 以对象为基本…

Docker 实践与应用举例

一、引言 在当今快速发展的信息技术领域&#xff0c;容器化技术已成为推动软件开发、部署和运维变革的关键力量。Docker 作为容器化技术的领军者&#xff0c;以其高效、便捷、可移植等特性&#xff0c;被广泛应用于各种场景。它能够将应用程序及其依赖项打包成一个独立的容器&…

C++初阶——类和对象(一)

C初阶——类和对象&#xff08;一&#xff09; 一、面向过程和面向对象 1.面向过程 面向过程的程序设计&#xff08;Procedure-Oriented Programming&#xff09;&#xff0c;简称POP&#xff0c;是一种是以程序执行流程为核心的编程范式。它是先分析出解决问题所需要的的步…