Pytorch 学习路程

目录

下载Pytorch

入门尝试

几种常见的Tensor

Scalar

Vector

Matrix

AutoGrad机制

线性回归尝试

使用hub模块


Pytorch是重要的人工智能深度学习框架。既然已经点进来,我们就详细的介绍一下啥是Pytorch

PyTorch

  • 希望将其代替 Numpy 来利用 GPUs 的威力;

  • 一个可以提供更加灵活和快速的深度学习研究平台。

下载Pytorch

不必着急担心我们下啥版本,Pytorch官网已经给出了一个良好的解决方案:

请根据自己的网站给出的方案进行选择!不要抄我的!

可以复制到Pycharm中,确定好自己的虚拟环境之后,就可以愉快的在终端执行网站推介的配置.

可以在Package包中选择自己的包管理:如果你的环境是conda环境,我个人推介使用conda来下(方便管理)

等待半个小时,我们下好了之后,,就可以使用这个代码跑一下:

在Pycharm的Python控制台上

import torch
torch.__version__

之后我们将会在控制台上尝试我们的代码,这里就不赘述了

入门尝试

我们随意的试一试一些API:

我们可以很轻松的创建一个矩阵:

torch.empty — PyTorch 2.2 documentation

x = torch.empty(5, 3)
x
tensor([[1.4767e+20, 1.6816e-42, 0.0000e+00],[0.0000e+00, 0.0000e+00, 0.0000e+00],[0.0000e+00, 0.0000e+00, 0.0000e+00],[0.0000e+00, 0.0000e+00, 0.0000e+00],[0.0000e+00, 0.0000e+00, 0.0000e+00]])

我们就会创建一个给定大小的torch:他的值是未初始化的(你可以反复执行查看结果,你会发现结果可能每一次都会发生变化)

我们可以很轻松的创建一个随机矩阵:

torch.rand — PyTorch 2.2 documentation

x = torch.rand(5, 3)
x
tensor([[0.7140, 0.1131, 0.6945],[0.8082, 0.6078, 0.5954],[0.9646, 0.6500, 0.8988],[0.4161, 0.1819, 0.3053],[0.1953, 0.3988, 0.9033]])

由此可见,他会随机的生成一些介于0和1之间的随机值

torch.zeros — PyTorch 2.2 documentation

x = torch.zeros(5, 3, dtype=torch.long)
x

将返回给我们一个全0的矩阵

我们还可以升级已有的数组结构:

torch.tensor — PyTorch 2.2 documentation

x = torch.tensor([5.5, 3])
x
tensor([5.5000, 3.0000])

当然可以使用size查看torch的大小

x.size()

还可以对之进行简单的操作:

y = torch.rand(5, 3)
x + y
# 等价操作:torch.add(x, y)
tensor([[1.1685, 1.4813, 1.1385],[1.4541, 1.4664, 1.4721],[1.5987, 1.1817, 1.3344],[1.2923, 1.8951, 1.8134],[1.8740, 1.7830, 1.7349]], dtype=torch.float64)

还可以同一般的Python那样进行索引

print(x)
x[:, 1]
tensor([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]], dtype=torch.float64)
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)

还可以变换维度

torch.Tensor.view — PyTorch 2.2 documentation

PyTorch中的view( )函数相当于numpy中的resize( )函数,都是用来重构(或者调整)张量维度的,用法稍有不同。

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) 
print(x.size(), y.size(), z.size())

还支持同其他库的协同操作:

a = torch.ones(5)
b = a.numpy()
b
array([1., 1., 1., 1., 1.], dtype=float32)
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
b
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)

几种常见的Tensor

torch.Tensor — PyTorch 2.2 documentation

我们的Tensor叫张量,回忆线性代数,我们的张量有维度,我们的维度可以从0上升到:

0: scalar       # 标量
1: vector       # 向量
2: matrix
3: n-dim tensor

Scalar

通常就是一个数值:

x = tensor(42.)
x

你就会发现结果实际上就是封装起来的一个数字:

tensor(42.)

使用dim方法可以查看这个张量的维度:

x.dim()
0

可以简单使用标量乘法,跟线性代数定义的乘法完全一致:

2 * x
tensor(84.)

对于标量,我们可以使用item方法提取里面的值

x.item()

但是建议判断item的维度选用这个方法,因为对于向量,这个方法会抛error

y = torch.tensor([3, 4])
y.item()
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[9], line 21 y = torch.tensor([3, 4])
----> 2 y.item()
​
RuntimeError: a Tensor with 2 elements cannot be converted to Scalar

Vector

例如: [-5., 2., 0.],在深度学习中通常指特征,例如词向量特征,某一维度特征等

Matrix

我们深度学习的计算多涉及矩阵:

M = tensor([[1., 2.], [3., 4.]])
M
tensor([[1., 2.],[3., 4.]])

矩阵可以进行矩阵乘法,但是要求满足线性代数下矩阵的乘法规则:

N = tensor([1, 2, 3])
M.matmul(N)
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[12], line 21 N = tensor([1, 2, 3])
----> 2 M.matmul(N)
​
RuntimeError: size mismatch, got input (2), mat (2x2), vec (3)

5cd99a73f8ce4494ad86852e_arraychart.jpg (3540×3187) (webflow.com)

AutoGrad机制

深度解析 PyTorch Autograd:从原理到实践 - 知乎 (zhihu.com)

Pytorch autograd,backward详解 - 知乎 (zhihu.com)

参考这两个博客,我来写写我的理解。我们构建的是基于张量的函数算子:

$$
f = f(X, Y, Z, ...)
$$

现在,我们需要求导,首先就要思考,对于多张量的函数,跟多变量函数一样,一些变量是我们这次运算中需要被求导的,一些不是,这样,我们就需要使用Tensor的required_grad参数机制:

x = torch.randn(3,4,requires_grad=True)
x

这样我们的x在后续参与函数运算的时候,在我们反向传播的时候就会参与求导运算。

一些参数的解释

  • data: 即存储的数据信息

  • requires_grad: 设置为True则表示该Tensor需要求导

  • grad: 该Tensor的梯度值,每次在计算backward时都需要将前一时刻的梯度归零,否则梯度值会一直累加,这个会在后面讲到。

  • grad_fn: 叶子节点通常为None,只有结果节点的grad_fn才有效,用于指示梯度函数是哪种类型。例如上面示例代码中的y.grad_fn=<PowBackward0 at 0x213550af048>, z.grad_fn=<AddBackward0 at 0x2135df11be0>

  • is_leaf: 用来指示该Tensor是否是叶子节点。

现在我们引入函数算子:

b = torch.randn(3,4,requires_grad=True)
# print(b)
t = x + b
t

我们实际上完成的是两个张量的相加,现在我们就知道,t作为一个结果,发生了两个张量的相加:

tensor([[ 1.2804, -1.8381,  0.0068, -0.3126],[-0.4901,  1.5733, -1.1383,  1.4996],[ 1.9931, -0.7548, -1.1527, -1.1703]], grad_fn=<AddBackward0>)# 看后面这个,这个说明稍后我们反向传播的时候使用AddBackward算子

使用y.backward()进行反向传播,这个时候,我们如何查看参与运算的张量的梯度呢,答案是:

print(x.grad)
print(b.grad)

可以注意到:我们求一次y.backward(),这个结果就会累加一次。

注意到,一些张量不是我们定义出来的而是算出来的,代表性的就是t,反之剩下的是参与基础运算的x和b

print(x.is_leaf, b.is_leaf, t.is_leaf)
True True False

这样我们就不会对叶子向量求导了!他们就是基础的变量。

线性回归尝试

啥是线性回归呢,我的理解是:使用线性的函数(如果不理解,那就是y = kx + b)拟合数据。我们从简单的线性拟合来。

生成一组(x, y)

import numpy as np
x_values = [i for i in range(11)]
x_train = np.array(x_values, dtype=np.float32)
x_train = x_train.reshape(-1, 1)
x_train.shape
x_train
array([[ 0.],[ 1.],[ 2.],[ 3.],[ 4.],[ 5.],[ 6.],[ 7.],[ 8.],[ 9.],[10.]], dtype=float32)
y_values = [2*i + 1 for i in x_values]
y_train = np.array(y_values, dtype=np.float32)
y_train = y_train.reshape(-1, 1)
y_train.shape
y_train
array([[ 1.],[ 3.],[ 5.],[ 7.],[ 9.],[11.],[13.],[15.],[17.],[19.],[21.]], dtype=float32)

现在我们使用torch框架下的线性回归:

import torch
import torch.nn as nn
class LinearRegressionModel(nn.Module):def __init__(self, input_dim, output_dim):super(LinearRegressionModel, self).__init__()self.linear = nn.Linear(input_dim, output_dim)  
​def forward(self, x):out = self.linear(x) # 向前传播return out

这样我们就完成了一个最简单的模型

input_dim = 1
output_dim = 1
​
model = LinearRegressionModel(input_dim, output_dim)
model
LinearRegressionModel((linear): Linear(in_features=1, out_features=1, bias=True)
)
epochs = 1000           # 训练论数
learning_rate = 0.01    # 学习速率
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)   # 随机梯度下降
criterion = nn.MSELoss()    # 正则化惩罚系数

在这里我们进行训练

for epoch in range(epochs):epoch += 1# 注意转行成tensorinputs = torch.from_numpy(x_train)labels = torch.from_numpy(y_train)
​# 梯度要清零每一次迭代optimizer.zero_grad() 
​# 前向传播outputs = model(inputs)
​# 计算损失loss = criterion(outputs, labels)
​# 返向传播loss.backward()
​# 更新权重参数optimizer.step()if epoch % 50 == 0:print('epoch {}, loss {}'.format(epoch, loss.item()))

我们可以这样得到预测的值:

predicted = model(torch.from_numpy(x_train).requires_grad_()).data.numpy()
predicted

如何存取模型呢:

torch.save(model.state_dict(), 'model.pkl')
model.load_state_dict(torch.load('model.pkl'))

也可以使用GPU训练

import torch
import torch.nn as nn
import numpy as np
​
​
class LinearRegressionModel(nn.Module):def __init__(self, input_dim, output_dim):super(LinearRegressionModel, self).__init__()self.linear = nn.Linear(input_dim, output_dim)  
​def forward(self, x):out = self.linear(x)return out
​
input_dim = 1
output_dim = 1
​
model = LinearRegressionModel(input_dim, output_dim)
​
# 在这里,直接扔到GPU就行
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
​
​
criterion = nn.MSELoss()
​
​
learning_rate = 0.01
​
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
​
epochs = 1000
for epoch in range(epochs):epoch += 1inputs = torch.from_numpy(x_train).to(device)labels = torch.from_numpy(y_train).to(device)
​optimizer.zero_grad() 
​outputs = model(inputs)
​loss = criterion(outputs, labels)
​loss.backward()
​optimizer.step()
​if epoch % 50 == 0:print('epoch {}, loss {}'.format(epoch, loss.item()))

使用hub模块

torch.hub — PyTorch 2.2 documentation

Pytorch Hub是一个帮助研究者实现模型再现、快速推理验证的预训练模型库与一套相关的API框架。支持远程从github上下载指定模型、上传与分享训练好的模型、支持从本地加载预训练模型、自定义模型。支持模型远程加载与本地推理、当前Pytorch Hub已经对接到Torchvision、YOLOv5、YOLOv8、pytorchvideo等视觉框架

人话:我们可以直接在操作这些API直接嫖设置好的模型直接用。

我们可以前往Pytorch Hub尝试,搜索你感兴趣的模型:来个例子,我们对deeplabv3_resnet101,就可以搜索到Tutorial:

Deeplabv3 | PyTorch

import torch
model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet50', pretrained=True)
# or any of these variants
# model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet101', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_mobilenet_v3_large', pretrained=True)
model.eval()

这个时候他会下载模型(默认保存在用户文件夹下的C:/User/.cache/torch/下)

之后下载数据集:

# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/deeplab1.png", "deeplab1.png")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)

如果网络不好,请手动到地址下载!放到指定位置

然后处理它:

# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
# 定义transform算子
input_image = Image.open(filename)
input_image = input_image.convert("RGB")
preprocess = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 预处理
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
​
# move the input and model to GPU for speed if available
if torch.cuda.is_available():input_batch = input_batch.to('cuda')model.to('cuda')
​
with torch.no_grad():output = model(input_batch)['out'][0]
output_predictions = output.argmax(0)

查看效果如何

# create a color pallette, selecting a color for each class
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
colors = (colors % 255).numpy().astype("uint8")
​
# plot the semantic segmentation predictions of 21 classes in each color
r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size)
r.putpalette(colors)
​
import matplotlib.pyplot as plt
plt.imshow(r)
plt.show()

分类成功。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/736.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python --- 在python中安装NumPy,SciPy,Matplotlib以及scikit-learn(Windows平台)

在python中安装NumPy&#xff0c;SciPy&#xff0c;Matplotlib以及scikit-learn(Windows平台) 本文是针对(像我一样的)python新用户所写的&#xff0c;刚刚在电脑上装好python之后&#xff0c;所需的一些常见/常用的python第三方库/软件包的快速安装指引。包括了这些常用安装包…

(mac)性能监控平台搭建JMeter+Grafana+Influxdb

【实现原理】 通过influxdb数据库存储jmeter的结果&#xff0c;再通过grafana采集influxdb数据库数据&#xff0c;完成监控平台展示 一、时间序列数据InfluxDB 1.InfluxDB下载安装 官网下载 https://portal.influxdata.com/downloads/ 官网最新版&#xff1a; &#xff0…

测试用例的编写评审

1、什么叫软件测试用例 什么是测试用例 测试用例(TestCase) 是为项目需求而编制的一组测试输入、执行条件 以及预期结果&#xff0c;以便测试某个程序是否满足客户需求。–测试依据 可以总结为:每一个测试点的数据设计和步骤设计。–测试用例 2、测试用例的重要性(了解) 2.1…

x-cmd mod | x whisper - 使用 whisper.cpp 进行本地 AI 语音识别

介绍 Whisper 模块通过 whisper.cpp 帮助用户快速将音频转换为文字。 INFO: whisper.cpp 是一个用 C/C 编写的轻量级智能语音识别库&#xff0c;是基于 OpenAI 的 Whisper 模型的移植版本&#xff0c;旨在通过深度学习模型实现音频转文字功能。 由于 whisper.cpp 目前只支持 1…

记录一下flume中因为taildir_position.json因位置不对导致数据无法从kafka被采到hdfs上的问题

【背景说明】 我需要用flume将kafka上的数据采集到hdfs上&#xff0c;发现数据怎么到不了hdfs。 【问题排查】 1.kafka上已有相应的数据 2.我的flume配置文档&#xff08;没问题&#xff09;&#xff0c; 3.时间拦截器&#xff08;没问题&#xff09;&#xff0c; 4.JSONObje…

《运营之光》3.0 读书笔记

&#x1f604;作者简介&#xff1a; 小曾同学.com,一个致力于测试开发的博主⛽️&#xff0c;主要职责&#xff1a;测试开发、CI/CD 如果文章知识点有错误的地方&#xff0c;还请大家指正&#xff0c;让我们一起学习&#xff0c;一起进步。 &#x1f60a; 座右铭&#xff1a;不…

HarmonyOS开发案例:【首选项】

介绍 本篇Codelab是基于HarmonyOS的首选项能力实现的一个简单示例。实现如下功能&#xff1a; 创建首选项数据文件。将用户输入的水果名称和数量&#xff0c;写入到首选项数据库。读取首选项数据库中的数据。删除首选项数据文件。 最终效果图如下&#xff1a; 相关概念 [首…

OpenHarmony鸿蒙南向开发案例:【智能门铃】

样例简介 智能门铃通过监控来访者信息&#xff0c;告诉主人门外是否有人按铃、有陌生人靠近或者无人状态。主人可以在数字管家中远程接收消息&#xff0c;并根据需要进行远程取消报警和一键开锁。同时&#xff0c;也可以通过室内屏幕获取门外状态。室内屏幕显示界面使用DevEco…

SQL增加主键约束的条件

结论 常见认为设为主键的条件为&#xff1a; 值唯一不含空值 具体实施中会出现各种问题 添加主键约束的条件细则&#xff1a; 值唯一数据中不含空值在定义时需要not null约束&#xff08;使用check约束不行&#xff09; 验证实验 接下来我做了关于这个细则的验证实验&am…

【MATLAB源码-第193期】基于matlab的网络覆盖率NOA优化算法仿真对比VFINOA,VFPSO,VFNGO,VFWOA等算法。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 NOA&#xff08;Network Optimization Algorithm&#xff0c;网络优化算法&#xff09;是一个针对网络覆盖率优化的算法&#xff0c;它主要通过优化网络中节点的分布和配置来提高网络的整体覆盖性能。网络覆盖率是衡量一个无…

【学习】软件压力测试对软件产品的作用

在信息化高速发展的今天&#xff0c;软件产品已经成为各行各业不可或缺的一部分。然而&#xff0c;随着软件功能的日益复杂和用户需求的不断增长&#xff0c;软件产品的稳定性和可靠性问题也愈发凸显。在这样的背景下&#xff0c;软件压力测试作为软件质量保障的重要手段之一&a…

【项目亮点】大厂中分布式事务的最佳实践 问题产生->难点与权衡(偏爱Saga)->解决方案

【项目亮点】大厂中分布式事务的最佳实践 问题产生->难点与权衡->解决方案->底层实现->应用案例 不断有同学问我大厂中实践分布式事务的问题,这里从分布式事务的产生,到强弱一致性与性能的权衡,再到最终落地的解决方案,再到实际的代码实现,再到我工作中实际使用SA…

【C语言__动态内存管理__复习篇6】

目录 前言 一、动态内存管理 二、动态内存函数 2.1 malloc 2.2 free 2.3 calloc 2.4 realloc 三、动态内存常见的6个使用错误 3.1 接收malloc/calloc返回的参数后未及时检查是否为NULL 3.2 越界访问动态内存空间 3.3 对非动态开辟的内存使用free释放 3.4 使用free只释放了…

AI时代,我要如何学习,才能跟上步伐

在21世纪这个被数据驱动的时代&#xff0c;人工智能&#xff08;AI&#xff09;已经渗透到我们生活的方方面面。无论是智能手机中的语音助手、在线客服的聊天机器人&#xff0c;还是自动驾驶汽车&#xff0c;AI的应用都在告诉我们一个信息&#xff1a;未来已来。因此&#xff0…

1.微服务介绍

完整的微服务架构图 注册中心 配置中心 服务集群 服务网关 分布式缓存 分布式搜索 数据库集群 消息队列 分布式日志服务 系统监控链路追踪 Jenkins docker k8s 技术栈 微服务治理&#xff1a; 注册发现、远程调用、负载均衡、配置管理、网关路由、系统保护、流量…

企业单位IPTV数字电视直播与点播系统-中国卫通怀来地球站IPTV数字电视直播与点播系统应用浅析

企业单位IPTV数字电视直播与点播系统-中国卫通怀来地球站IPTV数字电视直播与点播系统应用浅析 由北京海特伟业科技有限公司任洪卓发布于2024年4月19日 一、运营商光猫接入企业/单位IPTV数字电视直播与点播系统建设概述 中国卫通怀来地球站&#xff0c;位于怀来县土木镇&#xf…

小球反弹(蓝桥杯)

文章目录 小球反弹【问题描述】答案&#xff1a;1100325199.77解题思路模拟 小球反弹 【问题描述】 有一长方形&#xff0c;长为 343720 单位长度&#xff0c;宽为 233333 单位长度。在其内部左上角顶点有一小球&#xff08;无视其体积&#xff09;&#xff0c;其初速度如图所…

CentOS 7静默安装Oracle 11g(记一次最小化CentOS 7安装Oracle 11g的经历)

# [pdf在线免费转word文档](https://orcc.online/pdf) https://orcc.online/pdf 1.最小化安装CentOS 7后首先设置一下固定IP 可以先查询一下自己的网卡设备的名称&#xff0c;是ens33&#xff0c;所以网卡配置文件名称就是ifcfg-ens33&#xff08;前面的ifcfg-不用管&#xf…

HCIP-Datacom-ARST必选题库_01_ACL【7道题】

一、单选 1.下面是一台路由器的部分配置,关于该配置描述正确的是&#xff1a; 源地址为1.1.1.1的数据包匹配第一条ACL语句rule 0,匹配规则为允许 源地址为1.1.1.3的数据包匹配第三条ACL语句rule 2,匹配规则为拒绝 源地址为1.1.1.4的数据包匹配第四条ACL语句rule 3,匹配规则为允…

【Python】函数(纯干货版)

目录 什么是函数 函数定义 函数的文档说明 局部变量和全局变量 综合案例&#xff1a;模拟实现ATM界面 什么是函数 函数是组织好的&#xff0c;可重复使用的&#xff0c;用于实现特定功能的代码段&#xff0c;将功能封装在函数内&#xff0c;可供随时随地重复利用&#xff…