用discuz做交友网站/免费创建个人网页

用discuz做交友网站,免费创建个人网页,dedecms+wordpress,达州seo一、算法简介 (一)阿尔法进化(Alpha Evolution,AE)算法 阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的…

一、算法简介

(一)阿尔法进化(Alpha Evolution,AE)算法

阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。
参考文献:
[1]Gao H, Zhang Q. Alpha evolution: An efficient evolutionary algorithm with evolution path adaptation and matrix generation. Engineering Applications of Artificial Intelligence, 2024, 137: 109202.
原文链接:https://blog.csdn.net/weixin_46204734/article/details/146267896

(二)梦境优化算法(Dream Optimization Algorithm, DOA)

梦境优化算法(Dream Optimization Algorithm, DOA)是一种新型的元启发式算法(智能优化算法),其灵感来源于人类梦境的启发。在有做梦经历的快速眼动睡眠期间,低频脑电波的功率降低,而高频脑电波的功率增加,这表明在做梦经历期间大脑的神经兴奋更大。梦境优化算法(DOA)通过模拟人类梦境中的记忆和遗忘过程,结合基本的记忆策略和遗忘补充策略,平衡探索和利用,从而在优化过程中有效地搜索全局最优解。该算法在不同的阶段采用不同的搜索策略,初期扩大搜索范围,中期平衡全局和局部搜索,后期精细调整解,具有较强的全局搜索能力和良好的收敛性能。
参考文献:
[1]Lang Y, Gao Y. Dream Optimization Algorithm (DOA): A novel metaheuristic optimization algorithm inspired by human dreams and its applications to real-world engineering problems[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 436: 117718.

(三)牛优化( OX Optimizer,OX)算法

牛优化( OX Optimizer,OX)算法由 AhmadK.AlHwaitat 与 andHussamN.Fakhouri于2024年提出,该算法的设计灵感来源于公牛的行为特性。公牛以其巨大的力量而闻名,能够承载沉重的负担并进行远距离运输。这种行为特征可以被转化为优化过程中的优势,即在探索广阔而复杂的搜索空间时保持强大的鲁棒性。公牛不仅强壮,还具有灵活性、稳健性、适应性和协作能力等特点。这些特点使得OX优化器能够在不断变化的环境和优化需求中有效地找到最优解。
参考文献:
[1]Al Hwaitat AK, Fakhouri HN. The OX Optimizer: A Novel Optimization Algorithm and Its Application in Enhancing Support Vector Machine Performance for Attack Detection. Symmetry. 2024; 16(8):966. https://doi.org/10.3390/sym16080966

原文链接:https://blog.csdn.net/weixin_46204734/article/details/146278143

(四)山羊优化算法(Goat Optimization Algorithm, GOA)

山羊优化算法(Goat Optimization Algorithm, GOA)是2025年提出的一种新型生物启发式元启发式算法,灵感来源于山羊在恶劣和资源有限环境中的适应性行为。该算法旨在通过模拟山羊的觅食策略、移动模式和躲避寄生虫的能力,有效平衡探索和开发,以解决全局优化问题。
参考文献:
[1]nozari, hamed, and Agnieszka Szmelter-Jarosz. “Goat Optimization Algorithm: A Novel Bio-Inspired Metaheuristic for Global Optimization.” Applied Innovations in Industrial Management (AIIM), 2025.

原文链接:https://blog.csdn.net/weixin_46204734/article/details/146268590

(五)海市蜃楼搜索优化(Mirage Search Optimization, MSO)算法

海市蜃楼搜索优化(Mirage Search Optimization, MSO)算法是2025年提出的一种基于海市蜃楼物理现象的元启发式优化算法,于2025年2月在线发表在JCR一区、中科院2区SCI期刊《Advances in Engineering Software》上。海市蜃楼是一种常见的物理现象,其形成与气象和地理因素密切相关。太阳使地面温度上升,形成温度梯度,进而导致大气密度产生显著差异,造成大气中折射率的分层。光在大气中被折射,但大脑认为光是沿直线传播的,因此人们看到了物体的虚拟图像。MSO算法正是基于这一物理现象,通过模拟海市蜃楼的形成原理,设计了上蜃景策略和下蜃景策略,分别用于全局探索和局部开发,以实现对复杂优化问题的有效求解。
参考文献
[1]Jiahao He, Shijie Zhao, Jiayi Ding, Yiming Wang,Mirage search optimization: Application to path planning and engineering design problems,Advances in Engineering Software, Volume 203, 2025, 103883, https://doi.org/10.1016/j.advengsoft.2025.103883.

原文链接:https://blog.csdn.net/weixin_46204734/article/details/146268772

(六)龙卷风优化算法( Tornado Optimizer with Coriolis force ,TOC)

龙卷风优化算法( Tornado Optimizer with Coriolis force ,TOC) 是2025年提出的一种新型的基于自然启发的元启发式算法,其灵感来源于自然界中龙卷风的形成和演化过程。龙卷风的形成是一个复杂的自然现象,通常从雷暴或风暴中发展而来,并在地面上形成强烈的旋转气流。TOC 算法通过模拟龙卷风的形成、发展和消散过程,将其转化为优化问题中的搜索过程。
参考文献
[1]Braik, M., Al-Hiary, H., Alzoubi, H. et al. Tornado optimizer with Coriolis force: a novel bio-inspired meta-heuristic algorithm for solving engineering problems. Artif Intell Rev 58, 123 (2025). https://doi.org/10.1007/s10462-025-11118-9

原文链接:https://blog.csdn.net/weixin_46204734/article/details/146268242

2. 无人机路径规划数学模型

2.1 路径最优性

为了提高无人机的操作效率,规划的路径需要在特定的应用标准下达到最优。在我们的研究中,主要关注空中摄影、测绘和表面检查,因此选择最小化路径长度作为优化目标。由于无人机通过地面控制站(GCS)进行控制,飞行路径 X i X_i Xi 被表示为无人机需要飞越的一系列 n n n 个航路点的列表。每个航路点对应于搜索地图中的一个路径节点,其坐标为 P i j = ( x i j , y i j , z i j ) P_{ij} = (x_{ij}, y_{ij}, z_{ij}) Pij=(xij,yij,zij)。通过表示两个节点之间的欧几里得距离为 $| \overrightarrow{P_{ij}P_{i,j+1}} |,与路径长度相关的成本 F 1 F_1 F1 可以计算为:

F 1 ( X ) = ∑ j = 1 n − 1 ∥ P i j P i , j + 1 → ∥ F_1(X) = \sum_{j=1}^{n-1} \| \overrightarrow{P_{ij}P_{i,j+1}} \| F1(X)=j=1n1PijPi,j+1

2.2 安全性和可行性约束

除了最优性之外,规划的路径还需要确保无人机的安全操作,引导其避开操作空间中可能出现的威胁,这些威胁通常由障碍物引起。设 K K K 为所有威胁的集合,每个威胁被假设为一个圆柱体,其投影的中心坐标为 C k C_k Ck,半径为 R k R_k Rk,如下图 所示。
在这里插入图片描述

对于给定的路径段 ∥ P i j P i , j + 1 → ∥ \| \overrightarrow{P_{ij}P_{i,j+1}} \| PijPi,j+1 ,其相关的威胁成本与它到 C k C_k Ck 的距离 d k d_k dk 成正比。考虑到无人机的直径 D D D 和到碰撞区域的危险距离 S S S,威胁成本 F 2 F_2 F2 在障碍物集合 K K K 上计算如下:

F 2 ( X i ) = ∑ j = 1 n − 1 ∑ k = 1 K T k ( P i j P i , j + 1 → ) , F_2(X_i) = \sum_{j=1}^{n-1} \sum_{k=1}^K T_k(\overrightarrow{P_{ij}P_{i,j+1}}), F2(Xi)=j=1n1k=1KTk(PijPi,j+1 ),

其中

T k ( P i j P i , j + 1 → ) = { 0 , if  d k > S + D + R k ( S + D + R k ) − d k , if  D + R k < d k ≤ S + D + R k ∞ , if  d k ≤ D + R k T_k(\overrightarrow{P_{ij}P_{i,j+1}}) = \begin{cases} 0, & \text{if } d_k > S + D + R_k \\ (S + D + R_k) - d_k, & \text{if } D + R_k < d_k \leq S + D + R_k \\ \infty, & \text{if } d_k \leq D + R_k \end{cases} Tk(PijPi,j+1 )= 0,(S+D+Rk)dk,,if dk>S+D+Rkif D+Rk<dkS+D+Rkif dkD+Rk

在操作过程中,飞行高度通常被限制在给定的最小和最大高度之间,例如在调查和搜索应用中,需要相机以特定的分辨率和视场收集视觉数据,从而限制飞行高度。设最小和最大高度分别为 h min h_{\text{min}} hmin h max h_{\text{max}} hmax。与航路点 P i j P_{ij} Pij 相关的高度成本计算为:

H i j = { ∣ h i j − h max + h min 2 ∣ , if  h min ≤ h i j ≤ h max ∞ , otherwise H_{ij} = \begin{cases} |h_{ij} - \frac{h_{\text{max}} + h_{\text{min}}}{2}|, & \text{if } h_{\text{min}} \leq h_{ij} \leq h_{\text{max}} \\ \infty, & \text{otherwise} \end{cases} Hij={hij2hmax+hmin,,if hminhijhmaxotherwise

其中 h i j h_{ij} hij 表示相对于地面的飞行高度,如下图所示。
在这里插入图片描述

可以看出, H i j H_{ij} Hij 保持平均高度并惩罚超出范围的值。对所有航路点求和得到高度成本:

F 3 ( X ) = ∑ j = 1 n H i j F_3(X) = \sum_{j=1}^n H_{ij} F3(X)=j=1nHij

平滑成本评估转弯率和爬升率,这对于生成可行路径至关重要。如下图 所示。
在这里插入图片描述

转弯角 ϕ i j \phi_{ij} ϕij 是两个连续路径段 P i j ′ P i , j + 1 ′ → \overrightarrow{P'_{ij}P'_{i,j+1}} PijPi,j+1 P i , j + 1 ′ P i , j + 2 ′ → \overrightarrow{P'_{i,j+1}P'_{i,j+2}} Pi,j+1Pi,j+2 在水平面 Oxy 上的投影之间的角度。设 k → \overrightarrow{k} k 是 z 轴方向的单位向量,投影向量可以计算为:

P i j ′ P i , j + 1 ′ → = k → × ( P i j P i , j + 1 → × k → ) \overrightarrow{P'_{ij}P'_{i,j+1}} = \overrightarrow{k} \times (\overrightarrow{P_{ij}P_{i,j+1}} \times \overrightarrow{k}) PijPi,j+1 =k ×(PijPi,j+1 ×k )

因此,转弯角计算为:

ϕ i j = arctan ⁡ ( ∥ P i j ′ P i , j + 1 ′ → × P i , j + 1 ′ P i , j + 2 ′ → ∥ P i j P i , j + 1 ′ → ⋅ P i , j + 1 ′ P i , j + 2 ′ → ) \phi_{ij} = \arctan\left( \frac{\| \overrightarrow{P'_{ij}P'_{i,j+1}} \times \overrightarrow{P'_{i,j+1}P'_{i,j+2}} \|}{\overrightarrow{P_{ij}P'_{i,j+1}} \cdot \overrightarrow{P'_{i,j+1}P'_{i,j+2}}} \right) ϕij=arctan PijPi,j+1 Pi,j+1Pi,j+2 PijPi,j+1 ×Pi,j+1Pi,j+2

爬升角 ψ i j \psi_{ij} ψij 是路径段 P i j P i , j + 1 → \overrightarrow{P_{ij}P_{i,j+1}} PijPi,j+1 与其在水平面上的投影 P i j ′ P i , j + 1 ′ → \overrightarrow{P'_{ij}P'_{i,j+1}} PijPi,j+1 之间的角度,由下式给出:

ψ i j = arctan ⁡ ( z i , j + 1 − z i j ∥ P i j ′ P i , j + 1 ′ → ∥ ) \psi_{ij} = \arctan\left( \frac{z_{i,j+1} - z_{ij}}{\| \overrightarrow{P'_{ij}P'_{i,j+1}} \|} \right) ψij=arctan PijPi,j+1 zi,j+1zij

然后,平滑成本计算为:

F 4 ( X ) = a 1 ∑ j = 1 n − 2 ϕ i j + a 2 ∑ j = 1 n − 1 ∣ ψ i j − ψ j − 1 ∣ F_4(X) = a_1 \sum_{j=1}^{n-2} \phi_{ij} + a_2 \sum_{j=1}^{n-1} |\psi_{ij} - \psi_{j-1}| F4(X)=a1j=1n2ϕij+a2j=1n1ψijψj1

其中 a 1 a_1 a1 a 2 a_2 a2 分别是转弯角和爬升角的惩罚系数。

2.3 总体成本函数

2.3.1 单个无人成本计算

考虑到路径 X X X 的最优性、安全性和可行性约束, i i i 个无人机总体成本函数可以定义为以下形式:

f i ( X ) = ∑ k = 1 4 b k F k ( X i ) f_i(X) = \sum_{k=1}^4 b_k F_k(X_i) fi(X)=k=14bkFk(Xi)

其中 b k b_k bk 是权重系数, F 1 ( X i ) F_1(X_i) F1(Xi) F 4 ( X i ) F_4(X_i) F4(Xi) 分别是路径长度、威胁、平滑度和飞行高度相关的成本。决策变量是 X X X,包括 n n n 个航路点 P i j = ( x i j , y i j , z i j ) P_{ij} = (x_{ij}, y_{ij}, z_{ij}) Pij=(xij,yij,zij) 的列表,使得 P i j ∈ O P_{ij} \in O PijO,其中 O O O 是无人机的操作空间。根据这些定义,成本函数 F F F 是完全确定的,可以作为路径规划过程的输入。

2.3.2 多无人机总成本计算

若共有 m m m 个无人机,其总成本为单个无人机成本和,计算公式如下:
f i t n e s s ( X ) = ∑ i = 1 m f i ( X ) fitness(X) = \sum_{i=1}^mf_i(X) fitness(X)=i=1mfi(X)
参考文献:
[1] Phung M D , Ha Q P .Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[J].Applied Soft Computing, 2021(2):107376.DOI:10.1016/j.asoc.2021.107376.

三、部分代码及结果

close all
clear
clc
% dbstop if all error
pop=100;%种群大小(可以修改)
maxgen=200;%最大迭代(可以修改)%% 模型建立
model=Create_Model();
UAVnum=4;%无人机数量(可以修改)  必须与无人机的起始点保持一致%% 初始化每个无人机的模型
for i=1:UAVnumModelUAV(i).model=model;
end%% 第一个无人机 起始点
start_location = [120;200;100];
end_location = [800;800;150];
ModelUAV(1).model.start=start_location;
ModelUAV(1).model.end=end_location;
%% 第二个无人机 起始点
start_location = [400;100;100];
end_location = [900;600;150];
ModelUAV(2).model.start=start_location;
ModelUAV(2).model.end=end_location;
%% 第三个无人机 起始点
start_location = [200;150;150];
end_location =[850;750;150];
ModelUAV(3).model.start=start_location;
ModelUAV(3).model.end=end_location;
%% 第四个无人机 起始点
start_location = [100;100;150];
end_location = [800;730;150];
ModelUAV(4).model.start=start_location;
ModelUAV(4).model.end=end_location;
%% 第5个无人机 起始点
% start_location = [500;100;130];
% end_location = [850;650;150];
% ModelUAV(5).model.start=start_location;
% ModelUAV(5).model.end=end_location;
% %% 第6个无人机 起始点
% start_location = [100;100;150];
% end_location =   [800;800;150];
% ModelUAV(6).model.start=start_location;
% ModelUAV(6).model.end=end_location;

部分结果:
在这里插入图片描述

TOC:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

MSO:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

AE:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

DOA:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

GOA:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

OX:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码见下方名片

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/73584.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

上传本地项目到GitHub

一、在GitHub上创建仓库 1.点击右上角头像–>点击Your repositories 2.点击New 3.创建仓库 网址复制一下&#xff0c;在后面git上传时会用到 二、打开Git Bash 1.cd 进入项目所在路径 2.输入git init 在当前项目的目录中生成本地的git管理&#xff08;当前目录下出现.…

14.使用各种读写包操作 Excel 文件:辅助模块

一 各种读写包 这些是 pandas 在底层使用的各种读写包。无须安装 pandas&#xff0c;直接使用这些读写包就能够读写 Excel 工作簿。可以尽可能地使用 pandas 来解决这类问题&#xff0c;只在 pandas 没有提供你所需要的功能时才用到读写包。 表中没有 xlwings &#xff0c;因为…

ubuntu ollama+dify实践

安装ollama 官网的指令太慢了&#xff0c;使用以下指令加速&#xff1a; export OLLAMA_MIRROR"https://ghproxy.cn/https://github.com/ollama/ollama/releases/latest/download" curl -fsSL https://ollama.com/install.sh | sed "s|https://ollama.com/dow…

spring boot+mybaits多条件模糊查询和分页查询

我们首先写一下多条件的模糊查询&#xff0c;首先在controller里面写一个接口&#xff0c;进行传参&#xff0c;我们这里要注意&#xff0c;之前写修改和增加的时候用的注解都是RequestBody,也就是说&#xff01;前端传过来一个json&#xff0c;数组也行&#xff0c;然后我们后…

HarmonyOS NEXT - 电商App实例四(登录界面)

登录界面是用户进入App的第一步&#xff0c;因此需要简洁明了&#xff0c;同时保持品牌风格的一致性。如&#xff1a;顶部区域为品牌LOGO展示&#xff0c;增加品牌识别度&#xff1b;中间区域为登录表单&#xff0c;包含输入框和按钮&#xff1b;底部区域为其他登录方式、注册入…

图解多头注意力机制:维度变化一镜到底

目录 一、多头注意力机制概述二、代码实现1. pyTorch 实现2. tensorFlow实现 三、维度变化全流程详解1. 参数设定2. 维度变化流程图3. 关键步骤维度变化 四、关键实现细节解析1. 多头拆分与合并2. 注意力分数计算3. 掩码处理技巧 五、完整运行示例六、总结与常见问题1. 核心优势…

2.8滑动窗口专题:最小覆盖子串

1. 题目链接 LeetCode 76. 最小覆盖子串 2. 题目描述 给定字符串 s 和 t&#xff0c;要求找到 s 中最小的窗口&#xff0c;使得该窗口包含 t 的所有字符&#xff08;包括出现次数&#xff09;。若不存在&#xff0c;返回空字符串。 示例&#xff1a; 输入&#xff1a;s &quo…

【数据分析大屏】基于Django+Vue汽车销售数据分析可视化大屏(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅

目录 一、项目背景 二、项目创新点 三、项目功能 四、开发技术介绍 五、项目功能展示 六、权威视频链接 一、项目背景 汽车行业数字化转型加速&#xff0c;销售数据多维分析需求激增。本项目针对传统报表系统交互性弱、实时性差等痛点&#xff0c;基于DjangoVue架构构建…

cyberstrikelab lab2

lab2 重生之我是渗透测试工程师&#xff0c;被公司派遣去测试某网络的安全性。你的目标是成功获取所有服务器的权限&#xff0c;以评估网络安全状况。 先扫一下 ​ ​ 192.168.10.10 ​ ​ 骑士cms 先找后台路径 http://192.168.10.10:808/index.php?madmin&cind…

在 Ubuntu 服务器上使用宝塔面板搭建博客

&#x1f4cc; 介绍 在本教程中&#xff0c;我们将介绍如何在 Ubuntu 服务器 上安装 宝塔面板&#xff0c;并使用 Nginx PHP MySQL 搭建一个博客&#xff08;如 WordPress&#xff09;。 主要步骤包括&#xff1a; 安装宝塔面板配置 Nginx PHP MySQL绑定域名与 SSL 证书…

【 <一> 炼丹初探:JavaWeb 的起源与基础】之 Servlet 3.0 新特性:异步处理与注解配置

<前文回顾> 点击此处查看 合集 https://blog.csdn.net/foyodesigner/category_12907601.html?fromshareblogcolumn&sharetypeblogcolumn&sharerId12907601&sharereferPC&sharesourceFoyoDesigner&sharefromfrom_link <今日更新> 一、Servle…

使用 Homebrew 安装 OpenJDK 并配置环境变量

在 macOS 上使用 Homebrew 安装 OpenJDK 是一种简单而高效的方式。本文将使用 Homebrew 安装 OpenJDK&#xff0c;并设置环境变量以便 Java 能够正确运行。 1. 安装 Homebrew 首先&#xff0c;确保你的 macOS 系统已经安装了 Homebrew。如果没有安装&#xff0c;可以通过以下…

【C语言】编译和链接详解

hi&#xff0c;各位&#xff0c;让我们开启今日份博客~ 小编个人主页点这里~ 目录 一、翻译环境和运行环境1、翻译环境1.1预处理&#xff08;预编译&#xff09;1.2编译1.2.1词法分析1.2.2语法分析1.2.3语义分析 1.3汇编1.4链接 2.运行环境 一、翻译环境和运行环境 在ANSI C…

【AWS入门】AWS云计算简介

【AWS入门】AWS云计算简介 A Brief Introduction to AWS Cloud Computing By JacksonML 什么是云计算&#xff1f;云计算能干什么&#xff1f;我们如何利用云计算&#xff1f;云计算如何实现&#xff1f; 带着一系列问题&#xff0c;我将做一个普通布道者&#xff0c;引领广…

Flutter_学习记录_ ImagePicker拍照、录制视频、相册选择照片和视频、上传文件

插件地址&#xff1a;https://pub.dev/packages/image_picker 添加插件 添加配置 android无需配置开箱即用&#xff0c;ios还需要配置info.plist <key>NSPhotoLibraryUsageDescription</key> <string>应用需要访问相册读取文件</string> <key>N…

蓝桥与力扣刷题(蓝桥 星期计算)

题目&#xff1a;已知今天是星期六&#xff0c;请问 20^22 天后是星期几? 注意用数字 1 到 7 表示星期一到星期日。 本题为填空题&#xff0c;只需要算出结果后&#xff0c;在代码中使用输出语句将所填结果输出即可。 解题思路&#xff0b;代码&#xff1a; 代码&#xff1…

向量数据库原理及选型

向量数据库 什么是向量什么是向量数据库原理应用场景 向量数据库的选型主流向量数据库介绍向量数据库对比主流向量数据库对比表 选型建议 什么是向量 向量是一组有序的数值&#xff0c;表示在多维空间中的位置或方向。向量通常用一个列或行的数字集合来表示&#xff0c;这些数…

以实现生产制造、科技研发、人居生活等一种或多种复合功能的智慧油站开源了

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒&#xff0c;省去繁琐重复的适配流程&#xff0c;实现芯片、算法、应用的全流程组合&#xff0c;从而大大减少企业级应用约95%的开发成本。用…

软考系统架构师 — 3 操作系统

目录 3.1 考点分析 3.1 操作系统概述 3.1.1 操作系统的功能 3.1.2 操作系统的分类 3.1.3 嵌入式操作系统主要特点 3.2 进程 3.2.1 进程的组成和状态 3.2.2 前趋图与进程资源图&#xff08;重点&#xff09; 3.2.3 进程同步与互斥 3.2.4 进程调度 3.2.5 死锁 3.3 线…

C++初阶——类和对象(三) 构造函数、析构函数

C初阶——类和对象&#xff08;三&#xff09; 上期内容&#xff0c;我们围绕类对象模型的大小计算&#xff0c;成员存储方式&#xff0c;this指针&#xff0c;以及C实现栈和C语言的比较&#xff0c;进一步认识了C的封装特性。本期内容&#xff0c;我们开始介绍类的默认成员函…