asp网站源码安装流程/百度网站推广费用

asp网站源码安装流程,百度网站推广费用,毕设 代做 网站,西安市政道桥建设公司网站大语言模型学习大纲 大语言模型学习知识点大纲一、基础知识准备二、机器学习入门三、自然语言处理(NLP)基础四、Transformer架构与实践五、高级主题六、前沿研究与实战项目 学习步骤第一步:打牢基础第二步:掌握机器学习与深度学习基础第三步:…

大语言模型学习大纲

      • 大语言模型学习知识点大纲
        • 一、基础知识准备
        • 二、机器学习入门
        • 三、自然语言处理(NLP)基础
        • 四、Transformer架构与实践
        • 五、高级主题
        • 六、前沿研究与实战项目
      • 学习步骤
        • 第一步:打牢基础
        • 第二步:掌握机器学习与深度学习基础
        • 第三步:进入自然语言处理领域
        • 第四步:深入Transformer架构
        • 第五步:探索高级主题
        • 第六步:参与实战项目与前沿研究

为了帮助你系统地学习大语言模型(Large Language Models, LLMs),以下是一个详细的知识点大纲和相应的学习步骤,旨在从基础到高级逐步深入理解这一领域。

大语言模型学习知识点大纲

一、基础知识准备
  1. 数学基础
    • 线性代数:向量空间、矩阵运算等。
    • 概率论与统计学:概率分布、贝叶斯定理等。
    • 微积分:导数、积分及其在优化中的应用。
  2. 编程基础
    • Python编程语言:变量、数据结构、控制流、函数等。
    • 常用库:NumPy、Pandas、Matplotlib等。
二、机器学习入门
  1. 监督学习
    • 回归分析:线性回归、逻辑回归。
    • 分类算法:KNN、SVM等。
  2. 无监督学习
    • 聚类算法:K-means、层次聚类。
    • 降维技术:PCA、t-SNE。
  3. 深度学习基础
    • 神经网络架构:感知机、多层感知机(MLP)。
    • 反向传播算法:梯度下降、链式法则的应用。
三、自然语言处理(NLP)基础
  1. 文本预处理
    • 分词、去停用词、词干提取。
    • 文本表示方法:独热编码、TF-IDF。
  2. 序列建模
    • 循环神经网络(RNN):基本RNN、LSTM、GRU。
    • 序列到序列(Seq2Seq)模型:编码器-解码器架构。
四、Transformer架构与实践
  1. Transformer架构详解
    • Self-Attention机制:查询、键、值的概念。
    • Multi-Head Attention:并行化注意力机制。
  2. BERT及其他预训练模型
    • BERT模型结构:Masked Language Model(MLM)、Next Sentence Prediction(NSP)。
    • 其他变种:RoBERTa、DistilBERT等。
  3. 微调与部署
    • 如何在特定任务上微调预训练模型。
    • 使用Hugging Face Transformers库进行实验。
五、高级主题
  1. 模型优化
    • 学习率调度、梯度裁剪。
    • 数据增强技术在NLP中的应用。
  2. 分布式训练
    • 数据并行与模型并行。
    • 使用Horovod或DeepSpeed进行大规模训练。
  3. 生成对抗网络(GANs)
    • GANs在文本生成中的应用。
    • TextGAN、SeqGAN等模型介绍。
六、前沿研究与实战项目
  1. 最新研究成果追踪
    • 阅读顶级会议论文(如NeurIPS、ICML)。
    • 关注arXiv上的新提交。
  2. 项目实践
    • 实现一个简单的聊天机器人。
    • 构建自己的文本分类器或摘要生成器。
    • 开源贡献:参与GitHub上的相关项目。

学习步骤

第一步:打牢基础
  • 完成线性代数、概率论、统计学和微积分的基础课程。
  • 学习Python编程,并熟悉常用的科学计算库(NumPy、Pandas等)。
第二步:掌握机器学习与深度学习基础
  • 学习监督学习和无监督学习的基本概念和算法。
  • 深入了解神经网络的工作原理及其实现方式。
第三步:进入自然语言处理领域
  • 掌握文本预处理技术。
  • 学习序列建模的基础知识,特别是循环神经网络的应用。
第四步:深入Transformer架构
  • 详细了解Transformer架构及其核心组件。
  • 学习如何使用预训练模型,并在特定任务上进行微调。
第五步:探索高级主题
  • 学习模型优化技巧和分布式训练方法。
  • 探讨GANs在文本生成领域的应用。
第六步:参与实战项目与前沿研究
  • 通过实际项目来巩固所学知识。
  • 跟踪最新的研究成果,尝试将新的想法融入自己的工作中。

这个大纲覆盖了从基础到高级的各个层面,确保你能够循序渐进地掌握大语言模型的相关知识。记得在每个阶段都要结合实际操作和项目练习,这样才能更好地理解和运用所学内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/73493.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Trae与Builder模式初体验

说明 下载的国际版:https://www.trae.ai/ 建议 要选新模型 效果 还是挺不错的,遇到问题反馈一下,AI就帮忙解决了,真是动动嘴(打打字就行了),做些小的原型效果或演示Demo很方便呀&#xff…

【设计模式】《设计模式:可复用面向对象软件的基础》:设计模式怎样解决设计问题?

文章目录 ⭐前言⭐一、设计模式怎样解决设计问题?🌟1、寻找合适的对象🌟2、决定对象的粒度🌟3、指定对象接口🌟4、描述对象的实现🌟5、运用复用机制✨(1)针对接口编程,而不是针对实现编程。✨(2…

【项目管理git】git学习

ps:所有东西都是个人理解 文章目录 一、git是什么,它用来做什么?二、相关知识库2.1 简单的linux指令2.2 git配置指令2.3 git常见的指令2.3.1 Git的上传原理2.3.2 版本回退相关内容 2.4 设置远程地址,本地上传到github2.4.1 ssh相…

python速通小笔记-------1.容器

1.字符串的标识 字符串需要用“”标识。 与c不同,python 写变量时 不需要标明数据类型每一行最后不需要加; 2.print函数的使用 与c中的printf函数一致 3.运算符 4.字符串str操作 1. 实现字符串拼接 2.% 实现字符串初始化 %s占位会把变量强制转变为…

零基础上手Python数据分析 (2):Python核心语法快速入门

写在前面 场景:每周销售数据报表整理 任务描述: 你需要每周从多个Excel文件中汇总销售数据,计算各项指标(销售额、订单量、客单价等),并生成周报。Excel操作痛点: 文件太多,手动打开复制粘贴,效率低下,容易出错。 多个Excel文件,每个都要打开、筛选、复制数据,重复…

【PHP】获取PHP-FPM的状态信息

文章目录 一、前言二、环境三、过程1)修改PHP-FPM配置文件2)修改Nginx配置文件3)访问页面4)修改状态页面端口 一、前言 PHP-FPM内置有一个状态页面,通过这个页面可以获取到FPM的一些状态信息(见下图&#…

搭建Spring Boot Admin监控系统

什么是Spring Boot Admin Spring Boot Admin 是一个用于管理和监控 Spring Boot 应用程序的开源工具。它提供了一个用户友好的 Web 界面,用于集中管理和监控多个 Spring Boot 应用程序的运行状态、健康状况、日志、配置等信息。 Spring Boot Admin 的核心功能 应用…

[CISCN 2022 初赛]ezpop(没成功复现)

打开在线环境可以看到&#xff1a; 记得之前做过一个类似的就是有点像照着漏洞去复现。应该可以直接在网上找到链子去打。 www.zip查看路由是 Index/test&#xff0c;然后 post 传参 a&#xff1a; exp&#xff08;参考了别的大神的wp&#xff09;&#xff1a; <?php //…

C 语 言 --- 二 维 数 组 的 应 用

C 语 言 --- 二 维 数 组 的 应 用 第 一 题 - - - 冒 泡 排 序冒 泡 排 序冒 泡 排 序 的 原 理 第 二 题 - - - 回 型 矩 阵特 点 第 三 题 - - - 蛇 形 矩 阵总结 &#x1f4bb;作者简介&#xff1a;曾 与 你 一 样 迷 茫&#xff0c;现 以 经 验 助 你 入 门 C 语 言 &…

5G核心网实训室搭建方案:轻量化部署与虚拟化实践

5G核心网实训室 随着5G技术的广泛应用&#xff0c;行业对于5G核心网人才的需求日益增长。高校、科研机构和企业纷纷建立5G实训室&#xff0c;以促进人才培养、技术创新和行业应用研究。IPLOOK凭借其在5G核心网领域的深厚积累&#xff0c;提供了一套高效、灵活的5G实训室搭建方…

寄生虫仿生算法:基于寄生虫特征的算法设计

寄生虫仿生算法:基于寄生虫特征的算法设计 基于寄生虫行为特征的仿生算法设计 import random import numpy as npclass EnhancedPBOA:def __init__(self, host_env, max_generations, population_size50):self.host_env host_envself.max_generations max_generationsself.p…

【医学影像 AI】基于深度学习的 ROP 病变检测图像评估系统

【医学影像 AI】基于深度学习的 ROP 病变检测图像评估系统 0. 论文简介0.1 基本信息0.2 摘要 1. 引言2. 材料与方法2.1 研究人群2.2 疾病分类与参考标准的制定2.3 深度学习系统开发2.4 定量严重程度评分2.5 数据分析 3. 结果4. 讨论6. 参考文献 0. 论文简介 0.1 基本信息 201…

Cursor初体验:excel转成CANoe的vsysvar文件

今天公司大佬先锋们给培训了cursor的使用&#xff0c;还给注册了官方账号&#xff01;跃跃欲试&#xff0c;但是测试任务好重&#xff0c;结合第三方工具开发也是没有头绪。 但巧的是&#xff0c;刚好下午有同事有个需求&#xff0c;想要把一个几千行的excel转成canoe的系统变…

每日一题---单词搜索(深搜)

单词搜索 给出一个二维字符数组和一个单词&#xff0c;判断单词是否在数组中出现&#xff0c; 单词由相邻单元格的字母连接而成&#xff0c;相邻单元指的是上下左右相邻。同一单元格的字母不能多次使用。 数据范围&#xff1a; 0 < 行长度 < 100 0 < 列长度 <…

【深度学习】多源物料融合算法(一):量纲对齐常见方法

目录 一、引言 二、量纲对齐常见方法 2.1 Z-score标准化Sigmoid归一化 2.2 Min-Max 归一化 2.3 Rank Transformation 2.4 Log Transformation 2.5 Robust Scaling 3、总结 一、引言 类似抖音、快手、小红书等产品的信息流推荐业务&#xff0c;主要通过信息流广告、信…

用C++新建快捷方式

1.创建文件 新建一个文件Ink.cpp,系统会自动生成对应的EXE文件 2.编写代码 #include<stdlib.h> int main(){ system("powershell -command \"$WshShellNew-Object -comObject WScript.Shell; $Shortcut$WshShell.CreateShortcut(\%UserProfile%\\Desktop\\1.…

基于Python的天气预报数据可视化分析系统-Flask+html

开发语言&#xff1a;Python框架&#xff1a;flaskPython版本&#xff1a;python3.8数据库&#xff1a;mysql 5.7数据库工具&#xff1a;Navicat11开发软件&#xff1a;PyCharm 系统展示 系统登录 可视化界面 天气地图 天气分析 历史天气 用户管理 摘要 本文介绍了基于大数据…

基于Uniapp开发tab选项卡/标签栏前端组件

在开发一些业务场景时候&#xff0c;可能需要切换标签栏来展示不同的信息列表。 为此开发了一个Uniapp组件&#xff08;myTab&#xff09;&#xff0c;下面为组件的展示效果&#xff1a; 案例代码&#xff1a; <template><view class"content"><myt…

文本组件+Image组件+图集

Canvas部分知识补充 元素渲染顺序 以Hierarchy参考 下方物体在上方物体前显示 子物体在父物体前显示 下方物体永远在前显示&#xff0c;无论上方的层次结构 资源导入 绝对路径&#xff1a;C:\Windows\Fonts下的许多字体可以用做UIText的字体资源 图片导入&#xff1a; 1.图…

C++初阶——类和对象(二)

C初阶——类和对象&#xff08;二&#xff09; 本期内容书接上回&#xff0c;继续讨论类和对象相关内容。类和对象属于C初阶部分&#xff0c;主要反映了面向对象编程的三大基本特点之一——封装&#xff0c;在C的学习中占有举足轻重的地位&#xff01; 一、类对象模型 1.如何…