网站开发心得/seo代码优化包括哪些

网站开发心得,seo代码优化包括哪些,市场营销策略有哪几种,佛山市网站建站网站需求描述:项目中需要通过经纬度坐标查询目标地所在的行政区。 解决思路大致有种,使用es和mysql分别查询。 1、使用es进行查询 将带有经纬度坐标的省市区数据存入es中,mappings字段使用geo point类型,索引及查询dsl如下。 geo p…

        需求描述:项目中需要通过经纬度坐标查询目标地所在的行政区。

        解决思路大致有种,使用es和mysql分别查询。   

    1、使用es进行查询

        将带有经纬度坐标的省市区数据存入es中,mappings字段使用geo point类型,索引及查询dsl如下。

        geo point文档地址:
                Geo-distance query | Elasticsearch Guide [8.6] | Elastic

                Sort search results | Elasticsearch Guide [8.6] | Elastic

        mappings结构:

PUT /sys_district
{"settings": {"index": {"number_of_shards": 1,"number_of_replicas": 1}},"mappings": {"properties": {"id": {"type": "long"},"parent_id": {"type": "long"},"name": {"type": "keyword"},"zipcode": {"type": "integer"},"pinyin": {"type": "keyword"},"location": {"type": "geo_point" // 如果用于地理坐标,可以考虑使用 geo_point 类型},"level": {"type": "byte" },"sort": {"type": "byte"}}}
}

        dsl语句:

# 搜索坐标点附近的数据
GET sys_district/_search
{"from": 0,"size": 3,"query": {"bool": {"must": {"match_all": {}},"filter": [{"geo_distance": {# 半径内距离限制"distance": "100km","location": {# 目的地坐标"lat": 34.4328,"lon": 115.88}}},{"term": {"level": "3"}}]}},
# 排序"sort" : [{"_geo_distance" : {"location" : {"lat" :  34.4328,"lon" :115.88},"order" : "asc","unit" : "km"}}]
}

        获取举例最近的排序不能漏了

 2、使用mysql进行查询

        将带有经纬度坐标的省市区数据存入mysql中,使用mysql直接计算,表结构及查询sql如下。

        表结构:

CREATE TABLE `sys_district` (`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 'ID',`parent_id` INT(10) UNSIGNED NOT NULL COMMENT '父栏目',`name` VARCHAR(50) NOT NULL DEFAULT '' COLLATE 'utf8_general_ci',`zipcode` INT(10) UNSIGNED NOT NULL DEFAULT '0',`pinyin` VARCHAR(100) NOT NULL DEFAULT '' COLLATE 'utf8_general_ci',`lng` VARCHAR(20) NOT NULL DEFAULT '' COLLATE 'utf8_general_ci',`lat` VARCHAR(20) NOT NULL DEFAULT '' COLLATE 'utf8_general_ci',`level` TINYINT(3) UNSIGNED NOT NULL DEFAULT '0',`sort` TINYINT(3) UNSIGNED NOT NULL DEFAULT '50' COMMENT '排序',`location` VARCHAR(255) NOT NULL DEFAULT '' COLLATE 'utf8_general_ci',PRIMARY KEY (`id`) USING BTREE
)
COMMENT='(公共)区域数据'
COLLATE='utf8_general_ci'
ENGINE=InnoDB
;

        查询sql: 

SELECT * FROM sys_district WHERE ABS(lat - 34.4328) + ABS(lng - 115.88) = (SELECT MIN(ABS(lng - 115.88) + ABS(lat - 34.4328)) FROM sys_district ) LIMIT 1;

        使用mysql计算可优化的地方在于,新版本mysql提供了空间几何字段类型POINT,优化后新表结构如下。

CREATE TABLE `sys_district` (`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 'ID',`parent_id` INT(10) UNSIGNED NOT NULL COMMENT '父栏目',`name` VARCHAR(50) NOT NULL DEFAULT '' COLLATE 'utf8mb3_general_ci',`zipcode` INT(10) UNSIGNED NOT NULL DEFAULT '0',`pinyin` VARCHAR(100) NOT NULL DEFAULT '' COLLATE 'utf8mb3_general_ci',`lng` VARCHAR(20) NOT NULL DEFAULT '' COLLATE 'utf8mb3_general_ci',`lat` VARCHAR(20) NOT NULL DEFAULT '' COLLATE 'utf8mb3_general_ci',`geom` POINT NOT NULL COMMENT 'geo',`level` TINYINT(3) UNSIGNED NOT NULL DEFAULT '0',`sort` TINYINT(3) UNSIGNED NOT NULL DEFAULT '50' COMMENT '排序',`location` VARCHAR(255) NOT NULL DEFAULT '' COLLATE 'utf8mb3_general_ci',PRIMARY KEY (`id`) USING BTREE,SPATIAL INDEX `geom` (`geom`)
)
COMMENT='(公共)区域数据'
COLLATE='utf8mb3_general_ci'
ENGINE=InnoDB
;

        字段设置:

ALTER TABLE `sys_district`ADD COLUMN `geom` POINT NULL AFTER `lat`;UPDATE sys_district SET geom = ST_PointFromText(CONCAT('POINT(', lng, ' ', lat, ')')) ;ALTER TABLE sys_district ADD SPATIAL INDEX(geom);

        查询sql如下:

        ST_PointFromText(CONCAT('POINT(', lng, ' ', lat, ')')) 将表中的经度和纬度转换为几何点。

  ST_Distance_Sphere(geom, ST_PointFromText(CONCAT('POINT(', 120.15, ' ', 30.28, ')'))) 计算每个点与目标点之间的距离(单位为米)。

  ORDER BY distance 按距离从小到大排序

SELECT id, name, lng, lat,ST_Distance_Sphere(geom, ST_PointFromText(CONCAT('POINT(', 120.15, ' ', 30.28, ')'))) AS distance
FROM sys_district
ORDER BY distance
LIMIT 3;

        3、其他方式

        如果带查询的数据项不变化,类似于行政区划的坐标,还可以把这些数据加载到内存中进行计算。

        3.1 Java-使用 Haversine 公式来计算(不依赖三方库)

        创建表示位置的类

public class Location {private double lon;private double lat;public Location(double lon, double double lat) {this.lon = lon;this.lat = lat;}// Getter 和 Setter 方法}

        使用 Haversine 公式计算两点间的距离

public class DistanceCalculator {private static final int EARTH_RADIUS = 6371; // 地球半径,单位为公里/*** 计算两个经纬度点之间的距离*/public static double calculateDistance(Location loc1, Location loc2) {double lat1 = Math.toRadians(loc1.getLat());double lon1 = Math.toRadians(loc1.getLon());double lat2 = Math.toRadians(loc2.getLat());double lon2 = Math.toRadians(loc2.getLon());double dlat = lat2 - lat1;double dlon = lon2 - lon1;double a = Math.sin(dlat / 2) * Math.sin(dlat / 2) +Math.cos(lat1) * Math.cos(lat2) *Math.sin(dlon / 2) * Math.sin(dlon / 2);double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));return EARTH_RADIUS * c; // 返回单位为公里}
}

        查找最近的数据点

public class NearestLocationFinder {public static LocationData findNearestLocation(List<LocationData> locations, Location targetLocation) {LocationData nearest = null;double minDistance = Double.MAX_VALUE;for (LocationData location : locations) {Location currentLocation = new Location(location.getLocation().getLon(), location.getLocation().getLat());double distance = DistanceCalculator.calculateDistance(currentLocation, targetLocation);if (distance < minDistance) {minDistance = distance;nearest = location;}}return nearest;}
}

        调用方法

public class Main {public static void main(String[] args) {// 已加载所有的位置数据List<LocationData> locations = loadData();// 输入的经纬度Location targetLocation = new Location(115.65, 34.43);// 查找最近的位置LocationData nearest = NearestLocationFinder.findNearestLocation(locations, targetLocation);System.out.println("最近的位置是: " + nearest.getName());}// 加载数据private static List<LocationData> loadData() {return new ArrayList<>();}
}

        4、Java-使用JTS STRtree(依赖三方库)

        maven依赖

<dependency><groupId>org.locationtech.jts</groupId><artifactId>jts-core</artifactId><version>1.18.2</version>
</dependency>

         调用方法

public class NearestPointFinder {public static void main(String[] args) {// 创建一个包含所有位置信息的列表List<LocationData> locations = loadData();// 输入的经纬度double lon = 115.65, lat = 34.43;// 使用JTS的STRtree加速查询STRtree tree = new STRtree();GeometryFactory geometryFactory = new GeometryFactory();for (LocationData location : locations) {Point point = geometryFactory.createPoint(new Coordinate(location.getLocation().getLon(), location.getLocation().getLat()));tree.insert(point.getEnvelopeInternal(), location);}Point targetPoint = geometryFactory.createPoint(new Coordinate(lon, lat));LocationData nearest = (LocationData) tree.nearestNeighbour(targetPoint.getEnvelopeInternal(), null);System.out.println("最近的位置是: " + nearest.getName());}private static List<LocationData> loadData() {// 加载位置数据return new ArrayList<>();}
}

        还有其他的一些三方库:H3 by Uber、GeoTools、Spatial4j等。

总结:没有最好的,只有最适合的,按需设计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/73284.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Appium等待机制--强制等待、隐式等待、显式等待

书接上回&#xff0c;Appium高级操作--其他操作-CSDN博客文章浏览阅读182次&#xff0c;点赞6次&#xff0c;收藏7次。书接上回Appium高级操作--从源码角度解析--模拟复杂手势操作-CSDN博客。https://blog.csdn.net/fantasy_4/article/details/146162851主要讲解了Appium的一些…

NFS实验配置笔记

NFS NFS服务 nfs&#xff0c;最早是Sun这家公司所发展出来的&#xff0c;它最大的功能就是可以透过网络&#xff0c;让不同的机器&#xff0c;不同的操作系统&#xff0c;进行实现文档的共享。所以你可以简单的将他看做是文件服务器。 实验准备 ①先准备一个服务器端的操作…

深度学习|MAE技术全景图:自监督学习的“掩码魔法“如何重塑AI基础

一、引言&#xff1a;深度学习的困境与自监督的曙光 深度学习&#xff08;Deep Learning&#xff09;无疑是当今人工智能领域基础中的基础。从图像识别到自然语言处理&#xff08;NLP&#xff09;&#xff0c;它在无数任务中展现了卓越性能。例如&#xff0c;在安防监控中&…

【SpringBoot】实现登录功能

在上一篇博客中&#xff0c;我们讲解了注册页面的实现。在此基础上会跳转到登录页面&#xff0c;今天给大家带来的是使用 SpringBoot&#xff0c;MyBatis&#xff0c;Html&#xff0c;CSS&#xff0c;JavaScript&#xff0c;前后端交互实现一个登录功能。 目录 一、效果 二、…

mingw工具源码编译

ming-w64 mingw编译生成的库&#xff0c;需要mingw的lib文件支持。 https://github.com/mingw-w64/mingw-w64 使用msys2的bash git checkout v8.0.3 ./configure --disable-dependency-tracking --targetx86_64-w64-mingw32 mingw32-make.exe -j4 修改makefile中的make 改成mi…

LSTM方法实践——基于LSTM的汽车销量时序建模与预测分析

Hi&#xff0c;大家好&#xff0c;我是半亩花海。本实验基于汽车销量时序数据&#xff0c;使用LSTM网络&#xff08;长短期记忆网络&#xff09;构建时间序列预测模型。通过数据预处理、模型训练与评估等完整流程&#xff0c;验证LSTM在短期时序预测中的有效性。 目录 一、实验…

Stable Diffusion教程|快速入门SD绘画原理与安装

什么是Stable Diffusion&#xff0c;什么是炼丹师&#xff1f;根据市场研究机构预测&#xff0c;到2025年全球AI绘画市场规模将达到100亿美元&#xff0c;其中Stable Diffusion&#xff08;简称SD&#xff09;作为一种先进的图像生成技术之一&#xff0c;市场份额也在不断增长&…

Webpack构建流程详解优化前端性能\Dev-Server与Proxy\网络攻击\HMR

简版 核心流程图 根据&#xff0c;Webpack的构建流程分为初始化、编译和输出三个阶段。初始化阶段读取配置、加载插件、实例化Compiler。编译阶段&#xff08;构建依赖关系&#xff09;涉及Compiler类的运行&#xff0c;生成Compilation对象&#xff0c;处理模块依赖。输出阶…

零成本搭建Calibre个人数字图书馆支持EPUB MOBI格式远程直读

文章目录 前言1.网络书库软件下载安装2.网络书库服务器设置3.内网穿透工具设置4.公网使用kindle访问内网私人书库 前言 嘿&#xff0c;各位书虫们&#xff01;今天要给大家安利一个超级炫酷的技能——如何在本地Windows电脑上搭建自己的私人云端书库。亚马逊服务停了&#xff…

【Linux 指北】常用 Linux 指令汇总

第一章、常用基本指令 # 注意&#xff1a; # #表示管理员 # $表示普通用户 [rootlocalhost Practice]# 说明此处表示管理员01. ls 指令 语法&#xff1a; ls [选项][目录或文件] 功能&#xff1a;对于目录&#xff0c;该命令列出该目录下的所有子目录与文件。对于文件&#xf…

跟踪napi_gro_receive_entry时IP头信息缺失的分析

问题描述 在使用eBPF程序跟踪napi_gro_receive_entry内核跟踪点时&#xff0c;发现获取到的IP头部字段&#xff08;如saddr、daddr、protocol&#xff09;为空值。 代码如下&#xff1a; /* 自定义结构体来映射 napi_gro_receive_entry tracepoint 的 format */ struct napi…

Android子线程更新View的方法原理

对于所有的Android开发者来说&#xff0c;“View的更新必须在UI线程中进行”是一项最基本常识。 如果不在UI线程中更新View&#xff0c;系统会抛出CalledFromWrongThreadException异常。那么有没有什么办法可以不在UI线程中更新View&#xff1f;答案当然是有的&#xff01; 一…

【Manus资料合集】激活码内测渠道+《Manus Al:Agent应用的ChatGPT时刻》(附资源)

DeepSeek 之后&#xff0c;又一个AI沸腾&#xff0c;冲击的不仅仅是通用大模型。 ——全球首款通用AI Agent的破圈启示录 2025年3月6日凌晨&#xff0c;全球AI圈被一款名为Manus的产品彻底点燃。由Monica团队&#xff08;隶属中国夜莺科技&#xff09;推出的“全球首款通用AI…

Python----计算机视觉处理(opencv:像素,RGB颜色,图像的存储,opencv安装,代码展示)

一、计算机眼中的图像 像素 像素是图像的基本单元&#xff0c;每个像素存储着图像的颜色、亮度和其他特征。一系列像素组合到一起就形成 了完整的图像&#xff0c;在计算机中&#xff0c;图像以像素的形式存在并采用二进制格式进行存储。根据图像的颜色不 同&#xff0c;每个像…

SQLiteStudio:一款免费跨平台的SQLite管理工具

SQLiteStudio 是一款专门用于管理和操作 SQLite 数据库的免费工具。它提供直观的图形化界面&#xff0c;简化了数据库的创建、编辑、查询和维护&#xff0c;适合数据库开发者和数据分析师使用。 功能特性 SQLiteStudio 提供的主要功能包括&#xff1a; 免费开源&#xff0c;可…

【软考网工-实践篇】DHCP 动态主机配置协议

一、DHCP简介 DHCP&#xff0c;Dynamic Host Configuration Protocol&#xff0c;动态主机配置协议。 位置&#xff1a;DHCP常见运行于路由器上&#xff0c;作为DHCP服务器功能&#xff1a;用于自动分配IP地址及其他网络参数给网络中的设备作用&#xff1a;简化网络管理&…

【Linux学习笔记】Linux用户和文件权限的深度剖析

【Linux学习笔记】Linux用户和文件权限的深度剖析 &#x1f525;个人主页&#xff1a;大白的编程日记 &#x1f525;专栏&#xff1a;Linux学习笔记 前言 文章目录 【Linux学习笔记】Linux用户和文件权限的深度剖析前言一. Linux权限管理1.1 文件访问者的分类&#xff08;人)…

58.Harmonyos NEXT 图片预览组件架构设计与实现原理

温馨提示&#xff1a;本篇博客的详细代码已发布到 git : https://gitcode.com/nutpi/HarmonyosNext 可以下载运行哦&#xff01; Harmonyos NEXT 图片预览组件架构设计与实现原理 文章目录 Harmonyos NEXT 图片预览组件架构设计与实现原理效果预览一、组件架构概述1. 核心组件层…

Appium高级操作--从源码角度解析--模拟复杂手势操作

书接上回&#xff0c;Android自动化--Appium基本操作-CSDN博客文章浏览阅读600次&#xff0c;点赞10次&#xff0c;收藏5次。书接上回&#xff0c;上一篇文章已经介绍了appium在Android端的元素定位方法和识别工具Inspector&#xff0c;本次要介绍使用如何利用Appium对找到的元…

SpringBoot学生宿舍管理系统的设计与开发

项目概述 幽络源分享的《SpringBoot学生宿舍管理系统的设计与开发》是一款专为校园宿舍管理设计的智能化系统&#xff0c;基于SpringBoot框架开发&#xff0c;功能全面&#xff0c;操作便捷。该系统涵盖管理员、宿管员和学生三大角色&#xff0c;分别提供宿舍管理、学生信息管…