HCIA项目实践--RIP相关原理知识面试问题总结回答

9.4 RIP

9.4.1 补充概念

什么是邻居?

        邻居指的是在网络拓扑结构中与某一节点(如路由器)直接相连的其他节点。它们之间可以直接进行通信和数据交互,能互相交换路由信息等,以实现网络中的数据转发和路径选择等功能。(上图R1和R2是邻居关系。)

什么是开销值?

        开销值(Cost Value)是衡量数据传输路径代价的一个量化指标。它通常与链路带宽、延迟、可靠性等因素相关,用于评估数据包通过某条链路或路径的代价。开销值越低,路径越优,网络设备会依据开销值来选择最优的数据传输路径,以实现高效的数据传输

上图中R2想要把信息发给R1时,只需要两个参数

目标网段和开销值(cost

        Cost (开销值 ) 当到达同一个目标网段存在多条路径时,需要比较开销值,优先选择开销值小的路径。

注意:同一种协议获取到的路由,比较开销值;不同协议获取到的路由,比较优先级。

这里开销值的算法:

COST = 本地路由表中的开销值 + 1

不同动态路由协议的开销值的评判标准是不一样的。

RIP开销值的评判标准 (跳数)

 以跳数作为选路依据,存在不合理性(如果加上传输速率就难说了)。每经过一个路由器跳数加 1,跳数越少开销值越低,通常规定 15 跳为最大有效跳数,16 跳则表示目标网络不可达。

RIP的优先级和工作半径

        RIP(路由信息协议)的默认的优先级设置为 100 ,这意味着在与其他路由协议竞争路由选择时,依据该优先级参与决策。同时,RIP 存在一个工作半径限制,即 15 跳。每经过一个路由器被视作一跳,跳数的增加意味着路径越长,当达到 15 跳时,便认为目标网络已达 “最远可达” 状态,若超过 15 跳,比如达到 16 跳,就会判定目标网络不可达。

Bellman-Ford算法(贝尔曼福特算法)

 1,R2发送2.0网段的路由信息给R1,R1本地的路由表中没有该网段的路由信息,R1将2.0网段的路由信息刷新到本地的路由表中。​2,R2发送2.0网段的路由信息给R1,R1本地的路由表中存在2.0网段的路由信息,并且,下一跳就是R2,R1将R2发来的路由信息刷新到本地的路由表中;(也就是将新的路由信息刷新到路由表中)。​3,R2发送2.0网段的路由信息给R1,R1本地的路由表中存在2.0网段的路由信息,并且,下一跳不是R2,如果发来的路由信息的开销值小于本地路由条目的开销值,则将R2发来的路由信息刷新到本地的路由表中;​4,R2发送2.0网段的路由信息给R1,R1本地的路由表中存在2.0网段的路由信息,并且,下一跳不是R2,如果发来的路由信息的开销值大于本地路由条目的开销值,则不刷新。

9.4.2 RIP的三个版本

RIPV1,RIPV2 --- IPV4

RIPNG --- IPV6

RIPV1和RIPV2的区别

1,RIPV1是有类别的路由协议,RIPV2是无类别的路由协议;

RIPV1在传递路由信息中目标网段时,不携带子网掩码;RIPV2携带子网掩码,路由宣告更灵活。

2,RIPV1不支持手工认证,RIPV2支持手工认证;

RIPV1 无手工认证机制,数据易被篡改;RIPV2 支持手工认证,像对暗号,保障路由信息安全。 手工认证(类似于有人敲门,去开门时对的暗号)。

3,RIPV1使用广播发送信息,RIPV2使用组播发送信息。

RIPV1 广播信息给所有设备,浪费资源;RIPV2 组播信息到指定组,节省带宽。

 #以上图为例,分析数据包#广播过程应用层:RIPV1传输层:UDP SP:520,DP:520 (4层)网络层:SIP:12.0.0.2 DIP:255.255.255.255 (3层)数据链路层:SMAC:自己 DMAC:全F (2层)#组播过程应用层:RIPV2传输层:UDP SP520,DP:520网络层:SIP:12.0.0.2 DIP:224.0.0.9(组播地址,专门为RIPV2准备的地址)数据链路层:SMAC:自己 DMAC:01-00-5e-00-00-09(所有组播地址都是以01-00-5e为开头的)。 

为什么RIP 协议传输层用 UDP 而非 TCP

一是 UDP 开销小,无连接、无拥塞控制与重传机制,能快速传输路由信息,适合 RIP 周期性更新需求。

二是 RIP 信息简单,少量数据传输,UDP 足以保证,无需 TCP 复杂机制。

三是可降低网络负载,提升效率,使网络响应更及时。

9.4.3 RIP的数据包
  • 请求数据包RIP-Request:路由器用它来主动获取其他路由器的路由信息。比如新接入网络的路由器,会发送请求包询问周边路由情况。

  • 响应数据包RIP-Response :(真正携带路由信息的数据包),包含路由表项,有目的网络地址、子网掩码、跳数等信息。路由器收到请求包后回应该包,也会定期广播或组播它来更新邻居的路由表。

 #注意RIP在收敛完成后,依然每隔30s会发送一个response报文 (类似于一个负责任的老师,为确保学生听懂,一直讲,直到或期待学生下一次能听懂。)这个行为叫周期更新,为了弥补没有确认机制;弥补没有保活机制。RIP的周期更新一定异步周期更新(类似高峰期需要错峰一样)

周期更新定义

        在计算机网络中,周期更新是指网络设备按照预先设定的固定时间间隔,对特定数据或信息进行刷新操作。例如路由器会周期性地向其他设备通告自己的路由表,以维护网络中路由信息的时效性。

周期更新作用

        周期更新可确保网络设备掌握的信息始终是最新的,有助于及时适应网络拓扑的变化。它能让路由选择更精准,减少数据传输延迟,增强网络的稳定性和可靠性,保障通信的顺畅进行。

9.4.4 RIP的计时器

RIP(路由信息协议)计时器是用于控制RIP运行节奏的机制。主要有更新计时器(定期广播路由信息)、失效计时器(判定路由是否失效)、抑制计时器(防止路由环路)和刷新计时器(决定何时从路由表清除无效路由),确保路由信息准确及时。

更新计时器(Update Timer)

  • 定义:该计时器用于设定路由器向相邻路由器广播路由信息的时间间隔,RIP 协议默认更新周期为 30 秒。即每 30 秒,运行 RIP 的路由器就会向相邻路由器发送完整的路由表。

  • 作用:定期更新可让各路由器的路由表紧跟网络拓扑变化,保持信息同步,保证数据包能沿最优路径转发。

  • 影响:更新周期设置很关键。过短会使网络通信流量大增,加重路由器处理负担;过长则在网络拓扑改变时,路由器难以及时获取新信息,导致数据包转发延迟甚至出错。

失效计时器(Expiration Timer)

  • 定义:失效计时器为每个路由条目单独计时,默认时长 180 秒。若在这段时间内,路由器未收到某路由条目的更新信息,该条目的失效计时器就会超时,路由器会将其度量值设为 16 跳(即无穷大),表示该路由不可达。

            时间是180S,当一条路由条目刷新之后开始计时,当180S时间到达后,该路由信息未刷新,则将判定该路由条目失效。首先,会将该路由信息从全局路由表中删除掉,但是,依然保存在缓存中,只是,将它的开销值改为16。在之后的周期更新中,依然会携带该路由信息。(带毒传输也就是只能告诉我有什么,但是不能告诉我没有什么。

  • 作用:它能有效检测网络中路由的有效性。当链路故障或路由器失效时,相关路由条目无法及时更新,失效计时器超时可让路由器迅速标记这些不可用路由。

  • 影响:其时长需根据网络稳定性合理调整。设置过短,网络短暂拥塞或延迟时易误判路由失效;设置过长,路由真正失效时路由器反应迟缓,影响网络正常运行。

抑制计时器(Hold - down Timer)

  • 定义:当路由器收到某路由条目不可达的消息后,会启动抑制计时器,默认 180 秒。计时期间,即便收到更优的该路由条目信息,路由器也不会立即更新路由表。

  • 作用:主要功能是防止路由环路。网络拓扑变化时,路由信息可能不一致、产生振荡,抑制计时器能让网络有时间稳定,避免路由器在不稳定时频繁更新路由表,减少环路发生。

  • 影响:设置不当会影响网络收敛速度。过长会使网络拓扑稳定后,路由器仍抑制更新,导致收敛缓慢;过短则难以有效防止路由环路。

刷新计时器(Flush Timer)

  • 定义:刷新计时器用于控制从路由表彻底删除失效路由条目的时间。某路由条目失效计时器超时后,刷新计时器开始计时,默认 240 秒,超时后该条目将被删除。

  • 作用:定期清理路由表中的无效条目,释放路由器内存资源,提高路由表查询效率。

  • 影响:时长设置要恰当。过短可能在网络短暂故障时过早删除可能恢复的条目;过长则会使无效信息长时间占据内存。

9.4.5 RIP的破环机制

(1)15跳的工作半径

   为路由范围划定了明确界限,有效避免了数据包在环路中无休止地循环转发,防止网络资源的浪费和拥塞,保证了路由的基本合理性和有效性。

(2)触发更新 --- 在拓扑结构发生变化时立即更新

   传统路由信息按固定间隔交换,网络拓扑突变,如链路断开、新节点加入时,固定更新难以及时反映,易导致环路。触发更新让路由器检测到变化后,立刻向相邻路由器发送新信息。网络中路由器能迅速获取并调整路由表,避免信息延迟导致的环路,使网络快速适应变化。

(3)水平分割 --- 从哪个接口接受到的信息将不再从这个接口发出

   因为信息从原接口发回,易在相邻路由器间循环形成环路。水平分割避免了不必要的信息往返,减少环路可能,提升信息传递效率。

(4)毒性逆转 --- 从哪个接口接受到的信息,依然可以从这个接口发出,但是要带毒

   是对水平分割的补充。通常水平分割禁止从接收接口再发信息,但特定场景会影响网络收敛。毒性逆转允许从原接口发信息,不过将路由跳数设为 16(即 “带毒”,表示不可达)。当网络变化使路由不可用时,能快速扩散不可达信息,让相邻路由器更新路由表,避免用无效路由,打破潜在环路,加速收敛。

注意:因为水平分割和毒性逆转的做法矛盾,所以,只能开启一个。华为设备默认开启水平分割。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/69855.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计SpringBoot校园二手交易小程序 校园二手交易平台(websocket消息推送+云存储+双端+数据统计)(源码+文档+运行视频+讲解视频)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

Django开发入门 – 4.创建Django app

Django开发入门 – 4.创建Django app Create A Django App Under An Existing Project By JacksonML 1. 什么是Django app? Django项目面向Web应用程序,它会由一个或多个子模块组成,这些子模块称为apps。 Django apps负责执行完整Web应用程序中涉及…

八、OSG学习笔记-

前一章节: 七、OSG学习笔记-碰撞检测-CSDN博客https://blog.csdn.net/weixin_36323170/article/details/145558132?spm1001.2014.3001.5501 一、了解OSG图元加载显示流程 本章节代码: OsgStudy/wids CuiQingCheng/OsgStudy - 码云 - 开源中国https:…

微信小程序医院挂号系统

第3章 系统设计 3.1系统体系结构 系统的体系结构非常重要,往往决定了系统的质量和生命周期。针对不同的系统可以采用不同的系统体系结构。本系统为微信小程序医院挂号系统,属于开放式的平台,所以在管理端体系结构中采用B/s。B/s结构抛弃了固…

嵌入式八股文面试题(二)C语言算法

相关概念请查看文章&#xff1a;C语言概念。 1. 如何实现一个简单的内存池&#xff1f; 简单实现&#xff1a; #include <stdio.h> #include <stdlib.h>//内存块 typedef struct MemoryBlock {void *data; // 内存块起始地址struct MemoryBlock *next; // 下一个内…

【嵌入式Linux应用开发基础】open函数与close函数

目录 一、open函数 1.1. 函数原型 1.2 参数说明 1.3 返回值 1.4. 示例代码 二、close函数 2.1. 函数原型 2.2. 示例代码 三、关键注意事项 3.1. 资源管理与泄漏防范 3.2. 错误处理的严谨性 3.3. 标志&#xff08;flags&#xff09;与权限&#xff08;mode&#xff…

MT6835 21位 磁编码器 SPI 平台无关通用驱动框架 STM32

MT6835 21位 磁编码器 SPI 平台无关通用驱动框架 STM32 1. 获取代码&#xff1a;2. 加入你的项目2.1 以 STM32 为例:2.2 以 ESP-IDF 为例: 3. 对接 API3.1 以 STM32 为例&#xff1a; 4. 更多函数说明5. 写入 EEPROM 示例 MT6835 Framework 纯C语言实现&#xff0c;跨平台&…

ArcGIS基础知识之ArcMap基础设置——ArcMap选项:常规选项卡设置及作用

作为一名 GIS 从业者,ArcMap 是我们日常工作中不可或缺的工具。对于初学者来说,掌握 ArcMap 的基础设置是迈向 GIS 分析与制图的第一步。今天,就让我们一起深入了解 ArcMap 选项中常规选项卡的各个设置,帮助大家更好地使用这款强大的软件。 在 ArcMap 中,常规选项卡是用户…

在fedora41中安装钉钉dingtalk_7.6.25.4122001_amd64

在Fedora-Workstation-Live-x86_64-41-1.4中安装钉钉dingtalk_7.6.25.4122001_amd64.deb 到官网下载钉钉Linux客户端com.alibabainc.dingtalk_7.6.25.4122001_amd64.deb https://page.dingtalk.com/wow/z/dingtalk/simple/ddhomedownload#/ 一、直接使用dpkg命令安装deb包报错…

设置mysql的主从复制模式

mysql设置主从复制模式似乎很容易&#xff0c;关键在于1&#xff09;主库启用二进制日志&#xff0c;2&#xff09;从库将主库设为主库。另外&#xff0c;主从复制&#xff0c;复制些什么&#xff1f;从我现在获得的还很少的经验来看&#xff0c;复制的内容有表&#xff0c;用户…

【算法学习】拓扑排序(Topological Sorting)

目录 定义 例子 拓扑排序的实现 核心思想 实现方法 1&#xff0c;Kahn算法&#xff08;基于贪心策略&#xff09; 步骤&#xff1a; 用二维数组存储图的例子 用哈希表存储图的例子 2&#xff0c;基于DFS的后序遍历法 总结 拓扑排序的应用场景 1&#xff0c;任务调度 …

AGI时代的认知重塑:人类文明的范式转移与思维革命

文章目录 引言:站在文明转型的临界点一、认知危机:当机器开始理解世界1.1 AGI的本质突破:从模式识别到世界建模1.2 人类认知的脆弱性暴露二、认知革命:重构思维的四个维度2.1 元认知升级:从直觉思维到二阶观察2.2 混合智能:人机认知回路的构建2.3 认知安全:防御机器思维…

零基础学CocosCreator·第九季-网络游戏同步策略与ESC架构

课程里的版本好像是1.9&#xff0c;目前使用版本为3.8.3 开始~ 目录 状态同步帧同步帧同步客户端帧同步服务端ECS框架概念ECS的解释ECS的特点EntityComponentSystemWorld ECS实现逻辑帧&渲染帧 ECS框架使用帧同步&ECS 状态同步 一般游戏的同步策略有两种&#xff1a;…

实现限制同一个账号最多只能在3个客户端(有电脑、手机等)登录(附关键源码)

如上图&#xff0c;我的百度网盘已登录设备列表&#xff0c;有一个手机&#xff0c;2个windows客户端。手机设备有型号、最后登录时间、IP等。windows客户端信息有最后登录时间、操作系统类型、IP地址等。这些具体是如何实现的&#xff1f;下面分别给出android APP中采集手机信…

算法基础:贪心|双指针|二分|倍增

贪心 算法思想&#xff1a; 把整个问题分解成多个步骤&#xff0c;在每个步骤都选取当前步骤的最优方案&#xff0c;直到所有步骤结束&#xff1b;每个步骤都不会影响后续步骤。 核心&#xff1a;采取局部最优&#xff0c;最终结果就全局最优。 双指针 反向扫描 同向扫描 二…

在本地校验密码或弱口令 (windows)

# 0x00 背景 需求是验证服务器的弱口令&#xff0c;如果通过网络侧校验可能会造成账户锁定风险。在本地校验不会有锁定风险或频率限制。 # 0x01 实践 ## 1 使用 net use 命令 可以通过命令行使用 net use 命令来验证本地账户的密码。打开命令提示符&#xff08;CMD&#xff0…

【设计模式】【行为型模式】观察者模式(Observer)

&#x1f44b;hi&#xff0c;我不是一名外包公司的员工&#xff0c;也不会偷吃茶水间的零食&#xff0c;我的梦想是能写高端CRUD &#x1f525; 2025本人正在沉淀中… 博客更新速度 &#x1f4eb; 欢迎V&#xff1a; flzjcsg2&#xff0c;我们共同讨论Java深渊的奥秘 &#x1f…

OSPF高级特性(3):安全特效

引言 OSPF的基础我们已经结束学习了&#xff0c;接下来我们继续学习OSPF的高级特性。为了方便大家阅读&#xff0c;我会将高级特性的几篇链接放在末尾&#xff0c;所有链接都是站内的&#xff0c;大家点击即可阅读&#xff1a; OSPF基础&#xff08;1&#xff09;&#xff1a;工…

把 DeepSeek1.5b 部署在显卡小于4G的电脑上

这里写自定义目录标题 介绍准备安装 Ollama查看CUDA需要版本安装CudaToolkit检查Cuda是否装好二、设置Ollama环境变量三、验证是否跑在GPU上ollama如何导入本地下载的模型安装及配置docker安装open-webui启动open-webui开始对话介绍 Deepseek1.5b能够运行在只用cpu和gpu内存小…

WebSocket与Socket.io的区别

文章目录 引言一、WebSocket&#xff1a;原生的实时通信协议&#xff08;一&#xff09;WebSocket 是什么&#xff08;二&#xff09;WebSocket 的工作原理&#xff08;三&#xff09;WebSocket 的使用方法&#xff08;四&#xff09;WebSocket 的优势&#xff08;五&#xff0…