新鲜速递:DeepSeek-R1开源大模型本地部署实战—Ollama + MaxKB 搭建RAG检索增强生成应用

在AI技术快速发展的今天,开源大模型的本地化部署正在成为开发者们的热门实践方向。最火的莫过于吊打OpenAI过亿成本的纯国产DeepSeek开源大模型,就在刚刚,凭一己之力让英伟达大跌18%,纳斯达克大跌3.7%,足足是给中国AI产业扬眉吐气了一回。

本文将手把手教大家如何利用DeepSeek-R1开源大模型,通过Ollama工具实现本地部署,并结合MaxKB搭建一个简单的RAG(检索增强生成)应用。

一、环境准备

在开始之前,请确保你的开发环境满足以下要求:

操作系统:Windows/Mac/Linux
Python版本:3.8及以上
硬件要求:建议使用NVIDIA显卡,至少16GB内存
安装工具:Git、Python3.9、pip、pytorch,实现请准备好CUDA驱动、pytorch的GPU版本

运行nvidia-smi命令可以查看CUDA版本在这里插入图片描述
然后到https://developer.nvidia.com/cuda-toolkit-archive下载对应版本的CUDA Toolkit
在这里插入图片描述
接下来安装cuDNN:https://developer.nvidia.com/rdp/cudnn-archive,找好对应CUDA版本的cuDNN
在这里插入图片描述
再接下来安装pytorch,到官网https://pytorch.org/get-started/locally/
在这里插入图片描述
当环境准备妥当之后,进入python,输入import torch,再输入torch.cuda.is_available()回车,看看是不是True,如果不是,则说明安装的版本不正确,比如驱动版本不对、CUDA版本不对、python版本不对、pytorch版本不对,特别要注意使用了国内镜像安装pytorch的朋友,有可能默认命中的是cpu版本而不是gpu版本,必要时需要手动下载whl安装包进行安装。
在这里插入图片描述
如果还想要后续使用MaxKB作为界面的话,那么Windows还需要启动Hyper-V并安装Docker Desktop,Linux则安装一套docker就可以,这里不再赘述。

二、Ollama本地部署DeepSeek-R1

Ollama是一个轻量级的AI模型运行框架,支持多种开源大模型的本地化部署。以下是部署deepseek-r1的具体步骤:

1. 安装Ollama

打开终端,Linux输入以下命令安装Ollama:

curl -fsSL https://ollama.com/install.sh | sh

而Windows就相对更容易安装一些,直接到官网下载即可
在这里插入图片描述

2. 下载并安装DeepSeek-R1模型

使用Ollama拉取DeepSeek-R1模型,这里因为我用的是4090显卡,显存只有24G,所以最大能运行32b模型:

ollama run deepseek-r1:32b

如果下载速度较慢,可以尝试使用镜像源或代理加速。下载完成之后即可在命令行里进行问答。
在这里插入图片描述
其中的think标签即它的深度思考过程
在这里插入图片描述
默认情况下,Ollama会在http://localhost:11434端口提供API服务,后面搭建MaxKB会用到。

三、使用MaxKB搭建RAG应用

MaxKB是一个专注于文档问答的开源工具,支持与本地AI模型结合使用。以下是具体步骤:

1. 安装MaxKB

如果你是使用Linux操作系统,则在有docker的情况下运行

docker run -d --name=maxkb --restart=always -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages cr2.fit2cloud.com/1panel/maxkb

如果用的是Windows操作系统,则运行

docker run -d --name=maxkb --restart=always -p 8080:8080 -v C:/maxkb:/var/lib/postgresql/data -v C:/python-packages:/opt/maxkb/app/sandbox/python-packages cr2.fit2cloud.com/1panel/maxkb

2. 配置DeepSeek-R1模型

用浏览器打开localhost:8080,按指示操作初始化管理员用户名和密码
然后到模型设置里手动填上deepseek-r1:32b模型
在这里插入图片描述
随后我们创建一个应用
在这里插入图片描述
然后我们设置这个应用,把刚才添加的AI模型选中,点击保存并发布
在这里插入图片描述
然后点击演示按钮,即可开始和deepseek-r1模型进行对话了
在这里插入图片描述
我们可以看到它在写代码方面非常出色
在这里插入图片描述
以下是它写出来的代码,效果还不错:

<template><div class="container"><h1 class="title">商品列表</h1><a-row :gutter="24"><a-col v-for="item in products" :key="item.id" :xs="24" :sm="12" :md="8" :lg="6" :xl="6"><a-card class="product-card" hoverable><template #cover><div class="image-wrapper"><a-image v-if="item.picture" :src="item.picture" alt="商品图片" /></div></template><div class="card-content"><h3 class="product-name">{{ item.name }}</h3><p class="product-description">{{ item.description }}</p><div class="price-section"><span class="price">¥{{ item.price }}</span></div><div class="action-buttons"><a-button type="primary" style="background-color: #ff6600; border-color: #ff6600;">查看详情</a-button><a-button style="margin-left: 8px; background-color: white; color: #ff6600; border-color: #ff6600;">加入购物车</a-button></div></div></a-card></a-col></a-row></div>
</template><script>
import { defineComponent } from 'vue';
import { Row, Col, Card, Image, Button } from 'ant-design-vue';export default defineComponent({components: {ARow: Row,ACol: Col,ACard: Card,AImage: Image,AButton: Button},data() {return {products: [{id: 1,name: '商品名称1',price: 99.99,picture: 'https://via.placeholder.com/200x200',description: '这是一个商品的简要描述,展示商品的基本信息。'},// 其他商品数据...]};}
});
</script><style scoped>
.container {padding: 24px;background-color: #f5f5f5;
}.title {margin-bottom: 24px;color: #333;font-size: 28px;text-align: center;
}.product-card {background-color: white;border-radius: 8px;transition: transform 0.2s;margin-bottom: 24px;
}.product-card:hover {transform: translateY(-5px);
}.image-wrapper {height: 200px;overflow: hidden;border-radius: 8px 8px 0 0;
}a-image {width: 100%;height: 100%;object-fit: cover;
}.card-content {padding: 16px;
}.product-name {margin: 0 0 12px 0;color: #333;font-size: 18px;
}.product-description {color: #666;font-size: 14px;line-height: 1.5;margin-bottom: 16px;
}.price-section {margin-bottom: 16px;
}.price {color: #ff6600;font-size: 20px;font-weight: bold;
}.action-buttons {display: flex;gap: 8px;justify-content: space-between;align-items: center;
}
</style>

那么它生成这么多token,耗时是多少呢?后台可以看到的
在这里插入图片描述
按这么算,生成速度是95tokens每秒,这么棒的效果只需要一块不到2万的4090D,简直不敢相信,相当于2万给自己找了一个会深度思考的助手,而且不是月薪,是妥妥的买断。

四、实战:构建一个简单的RAG应用

将需要问答的文档上传到MaxKB的知识库中。支持的文件格式包括PDF、Word、PPT等。
在这里插入图片描述
然后建议你上传markdown文档作为知识库,解析效率比较好,上传完成后可以批量进行向量化并生成问题。
在这里插入图片描述
在设置应用的时候勾选关联知识库即可在回答前搜索知识库。
在这里插入图片描述

五、总结

通过本文的实践,我们成功地将DeepSeek-R1模型部署到本地,并结合MaxKB搭建了一个简单的RAG应用。这种方式不仅节省了云服务的成本,还能够更好地控制数据隐私和模型性能,随时都可以对模型的回答进行RAG知识库的微调。如果你对AI技术感兴趣,不妨可以尝试一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/68589.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringCloud基础二(完结)

HTTP客户端Feign 在SpringCloud基础一中&#xff0c;我们利用RestTemplate结合服务注册与发现来发起远程调用的代码如下&#xff1a; String url "http://userservice/user/" order.getUserId(); User user restTemplate.getForObject(url, User.class);以上代码就…

[Java]泛型(一)泛型类

1. 什么是泛型类&#xff1f; 泛型类是指类中使用了占位符类型&#xff08;类型参数&#xff09;的类。通过使用泛型类&#xff0c;你可以编写可以处理多种数据类型的代码&#xff0c;而无需为每种类型编写单独的类。泛型类使得代码更具通用性和可重用性&#xff0c;同时可以保…

react native在windows环境搭建并使用脚手架新建工程

截止到2024-1-11&#xff0c;使用的主要软件的版本如下&#xff1a; 软件实体版本react-native0.77.0react18.3.1react-native-community/cli15.0.1Android Studio2022.3.1 Patch3Android SDKAndroid SDK Platform 34 35Android SDKAndroid SDK Tools 34 35Android SDKIntel x…

GESP2023年12月认证C++六级( 第三部分编程题(1)闯关游戏)

参考程序代码&#xff1a; #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <string> #include <map> #include <iostream> #include <cmath> using namespace std;const int N 10…

UE学习日志#15 C++笔记#1 基础复习

1.C20的import 看看梦开始的地方&#xff1a; import <iostream>;int main() {std::cout << "Hello World!\n"; } 经过不仔细观察发现梦开始的好像不太一样&#xff0c;这个import是C20的模块特性 如果是在VS里编写的话&#xff0c;要用这个功能需要新…

深入解析 C++17 中的 std::not_fn

文章目录 1. std::not_fn 的定义与目的2. 基本用法2.1 基本示例2.2 使用 Lambda 表达式2.3 与其他函数适配器的比较3. 在标准库中的应用3.1 结合标准库算法使用3.1.1 std::find_if 中的应用3.1.2 std::remove_if 中的应用3.1.3 其他标准库算法中的应用4. 高级技巧与最佳实践4.1…

AI大模型开发原理篇-2:语言模型雏形之词袋模型

基本概念 词袋模型&#xff08;Bag of Words&#xff0c;简称 BOW&#xff09;是自然语言处理和信息检索等领域中一种简单而常用的文本表示方法&#xff0c;它将文本看作是一组单词的集合&#xff0c;并忽略文本中的语法、词序等信息&#xff0c;仅关注每个词的出现频率。 文本…

创建前端项目的方法

目录 一、创建前端项目的方法 1.前提&#xff1a;安装Vue CLI 2.方式一&#xff1a;vue create项目名称 3.方式二&#xff1a;vue ui 二、Vue项目结构 三、修改Vue项目端口号的方法 一、创建前端项目的方法 1.前提&#xff1a;安装Vue CLI npm i vue/cli -g 2.方式一&…

INCOSE需求编写指南-附录 D: 交叉引用矩阵

附录 Appendix D: 交叉引用矩阵 Cross Reference Matrices Rules to Characteristics Cross Reference Matrix NRM Concepts and Activities to Characteristics Cross Reference Matrix Part 1 NRM Concepts and Activities to Characteristics Cross Reference Matrix Part…

案例研究丨浪潮云洲通过DataEase推进多维度数据可视化建设

浪潮云洲工业互联网有限公司&#xff08;以下简称为“浪潮云洲”&#xff09;成立于2018年&#xff0c;定位于工业数字基础设施建设商、具有国际影响力的工业互联网平台运营商、生产性互联网头部服务商。截至目前&#xff0c;浪潮云洲工业互联网平台连续五年入选跨行业跨领域工…

基于Python的人工智能患者风险评估预测模型构建与应用研究(下)

3.3 模型选择与训练 3.3.1 常见预测模型介绍 在构建患者风险评估模型时,选择合适的预测模型至关重要。不同的模型具有各自的优缺点和适用场景,需要根据医疗数据的特点、风险评估的目标以及计算资源等因素进行综合考虑。以下详细介绍几种常见的预测模型。 逻辑回归(Logisti…

灰色预测模型

特点&#xff1a; 利用少量、不完全的信息 预测的是指数型的数值 预测的是比较近的数据 灰色生成数列原理&#xff1a; 累加生成&#xff1a; 累减生成&#xff1a;通过累减生成还原成原始数列。 加权相邻生成&#xff1a;&#xff08;会更接近每月中旬&#xff0c;更推荐…

golang通过AutoMigrate方法自动创建table详解

一.AutoMigrate介绍 1.介绍 在 Go 语言中&#xff0c;GORM支持Migration特性&#xff0c;支持根据Go Struct结构自动生成对应的表结构,使用 GORM ORM 库的 AutoMigrate 方法可以自动创建数据库表&#xff0c;确保数据库结构与定义的模型结构一致。AutoMigrate 方法非常方便&am…

宝塔mysql数据库容量限制_宝塔数据库mysql-bin.000001占用磁盘空间过大

磁盘空间占用过多&#xff0c;排查后发现网站/www/wwwroot只占用7G&#xff0c;/www/server占用却高达8G&#xff0c;再深入排查发现/www/server/data目录下的mysql-bin.000001和mysql-bin.000002两个日志文件占去了1.5G空间。 百度后学到以下知识&#xff0c;做个记录。 mysql…

Case逢无意难休——深度解析JAVA中case穿透问题

Case逢无意难休——深度解析JAVA中case穿透问题~ 不作溢美之词&#xff0c;不作浮夸文章&#xff0c;此文与功名进取毫不相关也&#xff01;与大家共勉&#xff01;&#xff01; 更多文章&#xff1a;个人主页 系列文章&#xff1a;JAVA专栏 欢迎各位大佬来访哦~互三必回&#…

decison tree 决策树

熵 信息增益 信息增益描述的是在分叉过程中获得的熵减&#xff0c;信息增益即熵减。 熵减可以用来决定什么时候停止分叉&#xff0c;当熵减很小的时候你只是在不必要的增加树的深度&#xff0c;并且冒着过拟合的风险 决策树训练(构建)过程 离散值特征处理&#xff1a;One-Hot…

研发的立足之本到底是啥?

0 你的问题&#xff0c;我知道&#xff01; 本文深入T型图“竖线”的立足之本&#xff1a;专业技术 技术赋能业务能力。研发在学习投入精力最多&#xff0c;也误区最多。 某粉丝感发展遇到瓶颈&#xff0c;项目都会做&#xff0c;但觉无提升&#xff0c;想跳槽。于是&#x…

WPF基础 | 深入 WPF 事件机制:路由事件与自定义事件处理

WPF基础 | 深入 WPF 事件机制&#xff1a;路由事件与自定义事件处理 一、前言二、WPF 事件基础概念2.1 事件的定义与本质2.2 常见的 WPF 事件类型 三、路由事件3.1 路由事件的概念与原理3.2 路由事件的三个阶段3.3 路由事件的标识与注册3.4 常见的路由事件示例 四、自定义事件处…

DeepSeekMoE:迈向混合专家语言模型的终极专业化

一、结论写在前面 论文提出了MoE语言模型的DeepSeekMoE架构&#xff0c;目的是实现终极的专家专业化(expert specialization)。通过细粒度的专家分割和共享专家隔离&#xff0c;DeepSeekMoE相比主流的MoE架构实现了显著更高的专家专业化和性能。从较小的2B参数规模开始&#x…

机器人抓取与操作经典规划算法(深蓝)——2

1 经典规划算法 位姿估计&#xff1a;&#xff08;1&#xff09;相机系位姿 &#xff08;2&#xff09;机器人系位姿 抓取位姿&#xff1a;&#xff08;1&#xff09;抓取位姿计算 &#xff08;2&#xff09;抓取评估和优化 路径规划&#xff1a;&#xff08;1&#xff09;笛卡…