理解神经网络:Brain.js 背后的核心思想

温馨提示

这篇文章篇幅较长,主要是为后续内容做铺垫和说明。如果你觉得文字太多,可以:

  1. 先收藏,等后面文章遇到不懂的地方再回来查阅。
  2. 直接跳读,重点关注加粗或高亮的部分。

放心,这种“文字轰炸”不会常有的,哈哈~ 感谢你的耐心阅读!😊

欢迎来到 brain.js 的学习之旅!

无论你是零基础的新手,还是已经有一定编程经验的开发者,这个系列都将为你提供一个系统、全面的学习路径。我们将从最基础的概念开始,逐步深入到实际应用和高级技巧,最终让你能够自信地构建和训练自己的神经网络模型。

以下是我们的学习路线图:

brainJS-roadmap

这一系列文章从入门到进阶,涵盖了 brain.js 的核心功能、技术细节以及实际应用场景。不仅适合初学者学习和实践,也为有一定基础的开发者提供了更多扩展和深入的思考方向。接下来,我们进入系列的第一部分:基础篇。

Snipaste_2025-01-24_12-01-41

一、什么是神经网络?

1.1 神经网络的定义

神经网络(Neural Network),全称人工神经网络(Artificial Neural NetworkANN),是一种受生物神经系统启发的计算模型。它通过模拟人脑神经元的连接和工作方式,完成数据的处理和预测任务。

  • 直观理解:神经网络就像一个会学习的系统。它通过处理输入数据,生成与之对应的输出。例如,输入一张手写数字图片,神经网络会将其分类为 0 到 9 中的某一个数字。
  • 核心功能:神经网络擅长模式识别和预测。无论是语音识别、图像分类,还是文本生成,它都展现了强大的适应性和学习能力。
1.2 为什么神经网络如此强大?

传统的算法需要人为设计规则,而神经网络通过训练可以自动学习规则。这使它能够适应各种数据模式和任务场景。总结来说,神经网络是一个“通用函数近似器”,可以从数据中学习规律,并利用这些规律进行推理和预测。

1.3 举例说明:神经网络如何工作?

假设你有一组手写数字图片,神经网络的任务是识别这些数字。它的工作过程如下:

  1. 接收输入数据:将每张图片转化为像素矩阵,例如一个 28x28 的灰度图片会被展平为一个 784 维的向量。
  2. 特征提取:通过隐藏层逐步提取图片中的边缘、形状等关键信息。
  3. 生成输出:根据提取的特征,将图片分类为相应的数字(0 到 9)。

神经网络的强大之处在于它的“学习能力”。它能够从海量数据中提取特征并构建复杂的映射关系。它的核心结构类似于人脑,由大量的“神经元”组成,并通过“权重”连接,形成一个可以自我优化的网络。

二、神经网络的灵感来自大脑

2.1 人脑与人工神经网络的对比

神经网络的概念来源于对人脑结构和工作方式的模拟。人脑是由大约 860亿个神经元数百万亿个突触 组成的复杂网络。它通过这些神经元的连接和协作,完成思维、学习和决策等复杂任务。

人工神经网络(Artificial Neural NetworkANN)通过数学建模,抽象出人脑的部分功能。尽管人工神经网络远不及人脑复杂,但它能够在特定任务中表现得非常出色。

以下是人脑和人工神经网络的一些对比:

特性人脑人工神经网络
基本单元神经元(Neuron人工神经元(Node
信息传递方式电化学信号通过突触传播数值信号通过权重传播
学习能力通过强化学习调整突触连接强度通过训练调整权重和偏置
灵活性高度灵活,能处理多任务通常针对特定任务设计,灵活性较低
能耗高效低耗能能耗高,尤其在大规模训练时
2.2 生物神经元的工作原理

生物神经元由以下三个主要部分组成:

  1. 树突(Dendrite:接收其他神经元传来的信号。
  2. 细胞体(Soma:对接收到的信号进行整合和处理,并决定是否激活神经元。
  3. 轴突(Axon:如果神经元被激活,轴突将信号传递给下一个神经元。

信号传播过程

  • 树突接收到多个信号,并传递到细胞体。
  • 如果信号强度超过某个阈值,神经元会“激活”,产生动作电位
  • 动作电位通过轴突传播到突触,影响下一个神经元。
2.3 生物神经元的工作原理

人工神经元是对生物神经元的数学抽象模型,它通过以下方式工作:

  1. 接收输入信号(Input:每个输入信号代表一个特征值,例如房价预测中的面积或房间数。

  2. 加权求和(Weighted Sum:输入信号会根据重要性赋予不同的权重(Weight)。权重值越大,表示信号对最终结果的影响越大。

    输入信号会根据重要性赋予不同的权重(Weight)。权重值越大,表示信号对最终结果的影响越大。
    z = ∑ i = 1 n w i ⋅ x i + b z = \sum_{i=1}^{n} w_i \cdot x_i + b z=i=1nwixi+b
    其中:

    • xi:第 i 个输入信号
    • wi:对应的权重
    • b:偏置(Bias),用于调整计算结果
  3. 激活函数(Activation Function:加权求和结果会通过一个激活函数,决定神经元是否激活,以及激活后的输出值。

  4. 输出信号(Output:激活函数的结果被传递到下一层神经元,直到输出层。

2.4 从生物神经元到人工神经元的转化
生物神经元部分对应的人工神经元组件功能
树突(Dendrite输入信号接收外界输入数据,传递到神经元中处理
细胞体(Soma加权求和和激活函数处理输入信号,并根据阈值决定是否激活
轴突(Axon输出信号将激活后的信号传递给下一层的神经元

人工神经元的设计灵感虽然来源于生物神经元,但它的目标是高效计算和任务专用化,而不是完全复制生物神经元的复杂性。通过输入信号、权重、偏置和激活函数的协作,人工神经元能够处理复杂的数据模式并生成输出。

三、人工神经网络的基础结构

人工神经网络由多个神经元按照层级结构排列而成,通常包括以下三个部分:输入层隐藏层输出层。每一层都有特定的功能,它们协同工作以实现数据处理和任务预测。

NNS


3.1 输入层(Input Layer

作用:输入层是神经网络的起点,用于接收外部数据,并将这些数据传递给网络的下一层。

  • 每个输入节点对应一个特征值。例如,在房价预测中,特征可能包括面积、房间数、地理位置等。
  • 输入层本身不对数据进行任何处理,只是将数据作为信号传递到隐藏层。

假设我们有以下数据用于预测房价:

  • 面积:120 平方米
  • 房间数:3
  • 距市中心距离:5 公里

这些数据会作为输入信号传递到网络中。


3.2 隐藏层(Hidden Layer

作用:隐藏层是神经网络的核心计算部分,用于提取数据特征并执行复杂的数学运算。

  • 隐藏层节点会接收来自上一层的输入信号,经过权重计算和激活函数处理后,将结果传递给下一层。
  • 隐藏层的数量和每层节点数可以根据问题的复杂性调整。

隐藏层的计算过程

  1. 对输入信号进行加权求和:
    z = ∑ i = 1 n w i ⋅ x i + b z = \sum_{i=1}^{n} w_i \cdot x_i + b z=i=1nwixi+b

    • wi:输入信号的权重
    • xi:输入信号
    • b:偏置,用于调整计算结果
  2. 应用激活函数:
    a = f ( z ) a = f(z) a=f(z)

    • f:激活函数,用于引入非线性,使网络能够学习复杂的模式。

在房价预测中,隐藏层中的一个节点可能专注于“面积”和“房间数”之间的关系,而另一个节点可能关注“距离市中心”和“房价”的关系。通过多层隐藏层的计算,神经网络能够提取到输入数据中的深层次特征。


3.3 输出层(Output Layer

作用:输出层是神经网络的终点,用于生成最终结果。

  • 输出的形式取决于任务类型:
    • 分类任务:输出层通常包含多个节点,每个节点表示一个类别的概率。
    • 回归任务:输出层通常只有一个节点,表示连续值的预测结果。

在手写数字识别中,输出层有 10 个节点,表示数字 0-9 的概率。例如:输出层结果:[0.1, 0.05, 0.8, 0.05, ...],这里第 3 个节点的值为 0.8,表示神经网络预测输入图片是数字“2”。

在房价预测中,输出层可能直接输出房价,例如 200 万元


3.4 激活函数(Activation Function

作用:激活函数是每个节点的“开关”,决定神经元是否被激活,以及如何传递信号到下一层。

  • 如果没有激活函数,神经网络只能处理简单的线性关系,无法应对复杂的非线性问题。
  • 数学意义:激活函数引入非线性,使神经网络具备学习复杂映射关系的能力。

常见激活函数

  1. Sigmoid
    f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1
    将输出限制在 (0, 1) 范围内,适合二分类任务。

  2. ReLURectified Linear Unit
    f ( x ) = max ⁡ ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)
    简单高效,广泛用于隐藏层节点。

  3. Tanh(双曲正切函数)
    f ( x ) = e x − e − x e x + e − x

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/68448.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GPU上没程序在跑但是显存被占用

原因:存在僵尸线程,运行完但是没有释放内存 查看僵尸线程 fuser -v /dev/nvidia*关闭僵尸线程 pkill -9 -u 用户名 程序名 举例:pkill -9 -u grs python参考:https://blog.csdn.net/qq_40206371/article/details/143798866

大数据Hadoop入门3

第五部分(Apache Hive DML语句和函数使用) 1.课程内容大纲和学习目标 2.Hive SQL-DML-load加载数据操作 下面我们随机创建文件尝试一下 先创建一个hivedata文件夹 在这个文件夹中写一个1.txt文件 下面使用beeline创建一张表 只要将1.txt文件放在t_1文件…

网易云音乐歌名可视化:词云生成与GitHub-Pages部署实践

引言 本文将基于前一篇爬取的网易云音乐数据, 利用Python的wordcloud、matplotlib等库, 对歌名数据进行深入的词云可视化分析. 我们将探索不同random_state对词云布局的影响, 并详细介绍如何将生成的词云图部署到GitHub Pages, 实现数据可视化的在线展示. 介绍了如何从原始数据…

const的用法

文章目录 一、C和C中const修饰变量的区别二、const和一级指针的结合const修饰的量常出现的错误是:const和一级指针的结合总结:const和指针的类型转换公式 三、const和二级指针的结合 一、C和C中const修饰变量的区别 C中:const必须初始化,叫常…

AI DeepSeek

DeepSeek 文字解析 上传图片解析 视乎结果出入很大啊,或许我们应该描述更加清楚自己的需求。

996引擎 - NPC-动态创建NPC

996引擎 - NPC-动态创建NPC 创建脚本服务端脚本客户端脚本添加自定义音效添加音效文件修改配置参考资料有个小问题,创建NPC时没有控制朝向的参数。所以。。。自己考虑怎么找补吧。 多重影分身 创建脚本 服务端脚本 Mir200\Envir\Market_Def\test\test001-3.lua -- NPC八门名…

css粘性定位超出指定宽度失效问题

展示效果 解决办法&#xff1a;外层容器添加display:grid即可 完整代码 <template><div class"box"><div class"line" v-for"items in 10"><div class"item" v-for"item in 8">drgg</div>&…

Git客户端工具

Git&#xff08;读音为/gɪt/&#xff09;是一个开源的分布式版本控制系统&#xff0c;可以有效、高速地处理从很小到非常大的项目版本管理。 [1]也是Linus Torvalds为了帮助管理Linux内核开发而开发的一个开放源码的版本控制软件。 可使用工具TortoiseGit&#xff0c;官网下载…

Time Constant | RC、RL 和 RLC 电路中的时间常数

注&#xff1a;本文为 “Time Constant” 相关文章合辑。 机翻&#xff0c;未校。 How To Find The Time Constant in RC and RL Circuits June 8, 2024 &#x1f4a1; Key learnings: 关键学习点&#xff1a; Time Constant Definition: The time constant (τ) is define…

七、深入了解SpringBoot的配置文件

一、配置端口号 通过配置文件application.properties配置修改端口号 修改 application.properties 文件 #端口号修改成 9090 server.port9090运行结果&#xff0c;观察日志 二、配置文件格式 Spring Boot 配置⽂件有以下三种&#xff1a; • application.properties • ap…

set集合

set集合 Set系列集合&#xff1a; 无序&#xff1a;存取顺序不一致 不重复&#xff1a;可以去除重复 无索引&#xff1a;没有带索引的方法&#xff0c;所以不能使用普通for循环遍历&#xff0c;也不能通过索引来获取元素 可以看出set是无序的存和打印的顺序不一样 Set接中的…

马尔科夫模型和隐马尔科夫模型区别

我用一个天气预报和海藻湿度观测的比喻来解释&#xff0c;保证你秒懂&#xff01; 1. 马尔可夫模型&#xff08;Markov Model, MM&#xff09; 特点&#xff1a;状态直接可见 场景&#xff1a;天气预报&#xff08;晴天→雨天→阴天…&#xff09;核心假设&#xff1a; 下一个…

SimpleFOC STM32教程10|基于STM32F103+CubeMX,速度闭环控制(有电流环)

导言 SimpleFOC STM32教程09&#xff5c;基于STM32F103CubeMX&#xff0c;ADC采样相电流 如上图所示, 增加了电流环. 效果如下&#xff1a; 20250123-200906 RTT 如上图所示&#xff0c;三相占空比依然是马鞍波。当我用手去给电机施加阻力时&#xff0c;PID要维持目标转速&am…

基于蓝牙6.0的RSSI和UWB融合定位方法,可行性分析

融合RSSI&#xff08;接收信号强度指示&#xff09;和UWB&#xff08;超宽带&#xff09;两种技术进行蓝牙6.0定位是完全可行的&#xff0c;并且可以带来更高的定位精度和稳定性。本文给出分析和MATLAB仿真结果 文章目录 技术优势RSSIUWB融合的优势 实现方案数据融合算法硬件要…

富文本 tinyMCE Vue2 组件使用简易教程

参考官方教程 TinyMCE Vue.js integration technical reference Vue2 项目需要使用 tinyMCE Vue2 组件(tinymce/tinymce-vue)的第 3 版 安装组件 npm install --save "tinymce/tinymce-vue^3" 编写组件调用 <template><Editorref"editor"v-m…

项目集成Nacos

文章目录 1.环境搭建1.创建模块 sunrays-common-cloud-nacos-starter2.目录结构3.pom.xml4.自动配置1.NacosAutoConfiguration.java2.spring.factories 5.引入cloud模块通用依赖 2.测试1.创建模块 sunrays-common-cloud-nacos-starter-demo2.目录结构3.pom.xml4.application.ym…

K8S 启动探测、就绪探测、存活探测

先来思考一个问题&#xff1a; 在 Deployment 执行滚动更新 web 应用的时候&#xff0c;总会出现一段时间&#xff0c;Pod 对外提供网络访问&#xff0c;但是页面访问却发生404&#xff0c;这个问题要如何解决呢&#xff1f;学完今天的内容&#xff0c;相信你会有自己的答案。 …

基于物联网的智能环境监测系统(论文+源码)

1系统的功能及方案设计 本课题为基于物联网的智能环境监测系统的设计与实现&#xff0c;整个系统采用stm32f103单片机作为主控制器&#xff0c;通过DHT11传感器实现智能环境监测系统温度和湿度的检测&#xff0c;通过MQ传感器实现CO2浓度检测&#xff0c;通过光照传感器实现光照…

【愚公系列】《循序渐进Vue.js 3.x前端开发实践》030-自定义组件的插槽Mixin

标题详情作者简介愚公搬代码头衔华为云特约编辑&#xff0c;华为云云享专家&#xff0c;华为开发者专家&#xff0c;华为产品云测专家&#xff0c;CSDN博客专家&#xff0c;CSDN商业化专家&#xff0c;阿里云专家博主&#xff0c;阿里云签约作者&#xff0c;腾讯云优秀博主&…

基于SpringBoot电脑组装系统平台系统功能实现六

一、前言介绍&#xff1a; 1.1 项目摘要 随着科技的进步&#xff0c;计算机硬件技术日新月异&#xff0c;包括处理器&#xff08;CPU&#xff09;、主板、内存、显卡等关键部件的性能不断提升&#xff0c;为电脑组装提供了更多的选择和可能性。不同的硬件组合可以构建出不同类…