一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类

机器学习实战通常是将理论与实践结合,通过实际的项目或案例,帮助你理解并应用各种机器学习算法。下面是一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类。我们将通过该数据集来演示数据预处理、模型训练、评估和预测的全过程。

 访问更多内容来源 https://ai.tmqcjr.com

1. 安装所需库

首先,确保你已安装了scikit-learnmatplotlib等库,如果没有,请通过以下命令安装:

 

bash

复制代码

pip install scikit-learn matplotlib

2. 机器学习实战例程

导入必要的库
 

python

复制代码

import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

加载数据集

我们使用Scikit-Learn自带的鸢尾花数据集,这是一个经典的机器学习数据集。

 

python

复制代码

# 加载鸢尾花数据集 iris = load_iris() X = iris.data # 特征数据(花瓣和萼片的长度和宽度) y = iris.target # 标签数据(花的种类)

数据探索

在开始训练模型之前,我们可以对数据进行简单的探索,比如查看数据的维度和前几行。

 

python

复制代码

# 查看数据集的结构 print(f"数据集的特征名称: {iris.feature_names}") print(f"数据集的标签名称: {iris.target_names}") print(f"数据集的特征形状: {X.shape}") print(f"数据集的标签形状: {y.shape}") # 查看前5行数据 print(f"特征数据:\n{X[:5]}") print(f"标签数据:\n{y[:5]}")

数据划分

我们将数据集划分为训练集和测试集,通常使用70%训练,30%测试的比例。

 

python

复制代码

# 划分数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) print(f"训练集的样本数量: {X_train.shape[0]}") print(f"测试集的样本数量: {X_test.shape[0]}")

数据预处理

在使用机器学习模型之前,通常需要对数据进行标准化处理,以便提高模型的性能。

 

python

复制代码

# 数据标准化:将特征缩放至均值为0,方差为1的标准正态分布 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)

训练模型

我们将训练多个机器学习模型进行比较。这里使用常见的几种分类模型:K近邻(KNN)、支持向量机(SVM)、决策树和随机森林。

1. K近邻(KNN)
 

python

复制代码

# 初始化KNN模型并训练 knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) # 在测试集上评估模型 y_pred_knn = knn.predict(X_test) print("KNN分类报告:") print(classification_report(y_test, y_pred_knn)) print(f"KNN的准确率: {accuracy_score(y_test, y_pred_knn)}")

2. 支持向量机(SVM)
 

python

复制代码

# 初始化SVM模型并训练 svm = SVC(kernel='linear') svm.fit(X_train, y_train) # 在测试集上评估模型 y_pred_svm = svm.predict(X_test) print("SVM分类报告:") print(classification_report(y_test, y_pred_svm)) print(f"SVM的准确率: {accuracy_score(y_test, y_pred_svm)}")

3. 决策树(Decision Tree)
 

python

复制代码

# 初始化决策树模型并训练 dt = DecisionTreeClassifier(random_state=42) dt.fit(X_train, y_train) # 在测试集上评估模型 y_pred_dt = dt.predict(X_test) print("决策树分类报告:") print(classification_report(y_test, y_pred_dt)) print(f"决策树的准确率: {accuracy_score(y_test, y_pred_dt)}")

4. 随机森林(Random Forest)
 

python

复制代码

# 初始化随机森林模型并训练 rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train) # 在测试集上评估模型 y_pred_rf = rf.predict(X_test) print("随机森林分类报告:") print(classification_report(y_test, y_pred_rf)) print(f"随机森林的准确率: {accuracy_score(y_test, y_pred_rf)}")

评估模型

使用classification_report来评估模型的性能,显示精确度(Precision)、召回率(Recall)和F1-score。accuracy_score则显示整体的分类准确率。

 

python

复制代码

# 显示每个模型的准确率 models = ['KNN', 'SVM', '决策树', '随机森林'] accuracies = [ accuracy_score(y_test, y_pred_knn), accuracy_score(y_test, y_pred_svm), accuracy_score(y_test, y_pred_dt), accuracy_score(y_test, y_pred_rf) ] for model, accuracy in zip(models, accuracies): print(f"{model}的准确率: {accuracy}")

混淆矩阵

为了进一步分析模型的分类效果,可以绘制混淆矩阵。

 

python

复制代码

# 绘制混淆矩阵 def plot_confusion_matrix(cm, classes): plt.figure(figsize=(6, 6)) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) plt.xlabel('Predicted label') plt.ylabel('True label') plt.tight_layout() # KNN模型的混淆矩阵 cm_knn = confusion_matrix(y_test, y_pred_knn) plot_confusion_matrix(cm_knn, iris.target_names) # 显示图形 plt.show()

预测新数据

最后,我们可以使用训练好的模型对新的数据进行预测。

 

python

复制代码

# 使用KNN模型对新样本进行预测 new_data = np.array([[5.1, 3.5, 1.4, 0.2]]) # 一个新的样本(鸢尾花特征) new_data = scaler.transform(new_data) # 标准化 prediction = knn.predict(new_data) print(f"预测的花种类: {iris.target_names[prediction]}")

3. 模型总结

通过上述步骤,我们完成了以下内容:

  1. 数据加载与预处理:加载鸢尾花数据集并进行标准化处理。
  2. 模型训练与评估:训练了4个常见的机器学习模型(KNN、SVM、决策树和随机森林),并通过classification_reportaccuracy_score评估了各个模型的性能。
  3. 模型预测:使用训练好的模型对新数据进行了预测。

4. 总结

  • KNN:适合用于小型数据集,计算复杂度较高。
  • SVM:对于中小型数据集效果不错,但训练时间较长。
  • 决策树:易于理解和解释,但容易过拟合。
  • 随机森林:通过集成多棵决策树,通常表现良好,减少了过拟合的风险。

在实际的机器学习项目中,你可以根据任务的特点选择合适的模型,并不断调整参数以优化模型的表现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/65406.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

珞珈一号夜光遥感数据地理配准,栅格数据地理配准

目录 一、夜光数据下载: 二、夜光遥感数据地理配准 三、计算夜光数据值 四、辐射定标 五、以表格显示分区统计 五、结果验证 夜光数据位置和路网位置不匹配,虽然都是WGS84坐标系,不匹配!!!不要看到就直接…

Maven + MyBatis

文章目录 Maven 配置mybatis-config.xml 核心配置文件模板mybatis 映射 mapper可以 package不可以解决 Maven目录结构 Maven 配置 核心配置文件 <?xml version"1.0" encoding"UTF-8" ?> <!-- .dtd约束 --> <!DOCTYPE configurationPUBLIC…

【最新】西陆房产系统源码+uniapp全开源+环境教程

一.介绍 西陆房产管理系统&#xff0c;支持小程序、H5、APP&#xff1b;包含房客、房东(高级授权)、经纪人(高级授权)三种身份。核心功能有&#xff1a;新盘销售、房屋租赁、地图找房、房源代理(高级授权)、在线签约(高级授权)、电子合同(高级授权)、客户CRM跟进(高级授权)、经…

Elasticsearch检索之三:官方推荐方案search_after检索实现(golang)

Elasticsearch8.17.0在mac上的安装 Kibana8.17.0在mac上的安装 Elasticsearch检索方案之一&#xff1a;使用fromsize实现分页 快速掌握Elasticsearch检索之二&#xff1a;滚动查询(scrool)获取全量数据(golang) 1、search_after检索 在前面的文章介绍了fromsize的普通分页…

小程序基础 —— 10 如何调试小程序代码

如何调试小程序代码 在进行项目开发的时候&#xff0c;不可避免需要进行调试&#xff0c;那么如何调试小程序呢&#xff1f; 打开微信开发者工具后&#xff0c;有一个模拟器&#xff0c;通过模拟器能够实时预览自己写的页面&#xff0c;如下&#xff1a; 在上部工具栏中有一个…

VLM和VLAM(VLA)相关介绍和发展历程

目录 一、个人感想二、相关介绍2.1 视觉语言模型 (VLM) 的发展历程2.2 视觉语言动作模型 (VLA) 的发展历程2.3 一些关键的研究工作&#xff1a;一些架构图 三、发展历程3.1 视觉语言模型 (VLM) 的发展时间线3.2 视觉语言动作模型 (VLA) 的发展时间线 四、参考资料 一、个人感想…

算法题(18):删除有序数组中的重复项2

审题&#xff1a; 需要原地删除数据让数组中一个数据只能出现最多2次&#xff0c;并返回修改后的数组的数据个数 &#xff08;不会有空数组情况&#xff09; 思路&#xff1a; 双指针&#xff1a;我们用left指向下一个需要插入数据的位置&#xff0c;right去遍历数组 left数据的…

IPv6 基础协议-NDP

IPv6 基础协议报文 何为基础协议&#xff1f;像v4中的icmp、arp、hdcp之类的 在v6中只需要NDP协议&#xff0c;他是通过ICMPv6报文完成的&#xff0c;她能够实现邻居发现、无状态地址检测、重复地址检测、PMTU等功能 RS&#xff08;133&#xff09;RA&#xff08;134&#x…

MySQL外键类型与应用场景总结:优缺点一目了然

前言&#xff1a; MySQL的外键简介&#xff1a;在 MySQL 中&#xff0c;外键 (Foreign Key) 用于建立和强制表之间的关联&#xff0c;确保数据的一致性和完整性。外键的作用主要是限制和维护引用完整性 (Referential Integrity)。 主要体现在引用操作发生变化时的处理方式&…

分布式事务入门 一

分布式事务入门 一 您好&#xff0c;我是今夜写代码,今天学习下分布式事务相关理论&#xff0c;以及常见的解决方案&#xff0c;为后续掌握Seata分布式事务框奠定基础。 为什么需要分布式事务? 分布式事务主要由于存储资源的分布性&#xff0c;通常涉及多个数据库。 分布式…

Goland:专为Go语言设计的高效IDE

本文还有配套的精品资源&#xff0c;点击获取 简介&#xff1a;Goland是JetBrains公司开发的集成开发环境&#xff08;IDE&#xff09;&#xff0c;专为Go语言设计&#xff0c;提供了高效的代码编辑、强大的调试工具和丰富的项目管理功能。其智能代码补全、强大的调试与测试支…

uniapp 前端解决精度丢失的问题 (后端返回分布式id)

原因&#xff1a; 后端使用分布式id, id为19位数&#xff0c;导致精度丢失 &#xff0c;前端解决方法 这个是通过浏览器请求回来的数据&#xff0c;这个时候id 数据已经丢失了&#xff0c;在数据库查询不到&#xff0c;在调获详情接口的时候会有问题 实际的&#xff1a; 解决…

读书笔记-《乡下人的悲歌》

前段时间看了一些 J.D. Vance 的采访视频&#xff0c;几乎都是记者带着刁难的问题先手进攻&#xff0c;而 Vance 面带微笑&#xff0c;提及对方的名字&#xff0c;条理清晰地从对方的攻击中切回主题形成后手反制&#xff0c;实在让人看得过瘾。 更不可思议的是&#xff0c;Van…

Datawhale-AI冬令营二期

目录 一、番茄时钟&#xff08;1&#xff09;输入Prompt&#xff08;2&#xff09;创建 HTML 文件解析1&#xff1a;HTML结构解析2&#xff1a;计时器内容解析3&#xff1a;按钮区域解析4&#xff1a;脚本引用 &#xff08;3&#xff09;使用JavaScript实现时钟功能解析1&#…

【Sentinel】流控效果与热点参数限流

目录 1.流控效果 1.1.warm up 2.2.排队等待 1.3.总结 2.热点参数限流 2.1.全局参数限流 2.2.热点参数限流 2.3.案例 1.流控效果 在流控的高级选项中&#xff0c;还有一个流控效果选项&#xff1a; 流控效果是指请求达到流控阈值时应该采取的措施&#xff0c;包括三种&…

我的Qt作品(20)使用Qt+OpenCV写一个旋转/抠图/mask生成工具

使用QtOpenCV写一个旋转/抠图/mask生成工具 1、旋转功能 void FormRotate::rotateImage(const cv::Mat &src, cv::Mat &dst, double degree) //旋转 {if (fabs(degree) < 0.001){dst src;return;}//center旋转的中心点坐标//degree旋转的角度,不是弧度,>0逆时针…

win11中win加方向键失效的原因

1、可能是你把win键锁了&#xff1a; 解决办法&#xff1a;先按Fn键&#xff0c;再按win键 2、可能是可能是 贴靠窗口设置 中将贴靠窗口关闭了&#xff0c;只需要将其打开就好了

MetaRename for Mac,适用于 Mac 的文件批量重命名工具

在处理大量文件时&#xff0c;为每个文件手动重命名既耗时又容易出错。对于摄影师、设计师、开发人员等需要频繁处理和整理文件的专业人士来说&#xff0c;找到一款能够简化这一过程的工具是至关重要的。MetaRename for Mac 就是这样一款旨在提高工作效率的应用程序&#xff0c…

JavaScript甘特图 dhtmlx-gantt

背景 需求是在后台中&#xff0c;需要用甘特图去展示管理任务相关视图&#xff0c;并且不用依赖vue&#xff0c;兼容JavaScript原生开发。最终使用dhtmlx-gantt&#xff0c;一个半开源的库&#xff0c;基础功能免费&#xff0c;更多功能付费。 甘特图需求如图&#xff1a; 调…

VSCode下载安装指南

VSCode下载 通过网盘分享的文件&#xff1a;VSCodeUserSetup-x64-1.96.2.exe 链接: https://pan.baidu.com/s/1l7fdxeALnyeuUe1a5l0aqQ?pwdb8y3 提取码: b8y3 –来自百度网盘超级会员v6的分享 VSCode安装 1、下载好之后双击下图 2、我同意&#xff0c;下一步 3、可以点浏…