深度学习每周学习总结J9(Inception V3 算法实战与解析 - 天气识别)

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

目录

      • 0. 总结
      • Inception V1 简介
      • Inception V3 简介
      • 1. 设置GPU
      • 2. 导入数据及处理部分
      • 3. 划分数据集
      • 4. 模型构建部分
      • 5. 设置超参数:定义损失函数,学习率,以及根据学习率定义优化器等
      • 6. 训练函数
      • 7. 测试函数
      • 8. 正式训练
      • 9. 结果可视化
      • 10. 模型的保存
      • 11.使用训练好的模型进行预测

0. 总结

数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,查看数据分类情况,定义transforms,进行数据类型转换等操作。

划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()分别加载上一步处理好的训练及测试数据,查看批处理维度.

模型构建部分:Inception V3

设置超参数:在这之前需要定义损失函数,学习率(动态学习率),以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。

定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。函数内部初始化损失准确率为0,接着开始循环,使用DataLoader()获取一个批次的数据,对这个批次的数据带入模型得到预测值,然后使用损失函数计算得到损失值。接下来就是进行反向传播以及使用优化器优化参数,梯度清零放在反向传播之前或者是使用优化器优化之后都是可以的,一般是默认放在反向传播之前。

定义测试函数:函数传入的参数相比训练函数少了优化器,只需传入设置好的DataLoader(),定义好的模型,损失函数。此外除了处理批次数据时无需再设置梯度清零、返向传播以及优化器优化参数,其余部分均和训练函数保持一致。

训练过程:定义训练次数,有几次就使用整个数据集进行几次训练,初始化四个空list分别存储每次训练及测试的准确率及损失。使用model.train()开启训练模式,调用训练函数得到准确率及损失。使用model.eval()将模型设置为评估模式,调用测试函数得到准确率及损失。接着就是将得到的训练及测试的准确率及损失存储到相应list中并合并打印出来,得到每一次整体训练后的准确率及损失。

结果可视化

模型的保存,调取及使用。在PyTorch中,通常使用 torch.save(model.state_dict(), ‘model.pth’) 保存模型的参数,使用 model.load_state_dict(torch.load(‘model.pth’)) 加载参数。

需要改进优化的地方:确保模型和数据的一致性,都存到GPU或者CPU;注意numclasses不要直接用默认的1000,需要根据实际数据集改进;实例化模型也要注意numclasses这个参数;此外注意测试模型需要用(3,224,224)3表示通道数,这和tensorflow定义的顺序是不用的(224,224,3),做代码转换时需要注意。

关于调优(十分重要):本次将测试集准确率提升到了96.03%(随机种子设置为42)
1:使用多卡不一定比单卡效果好,需要继续调优
2:本次微调参数主要调整了两点一是初始学习率从1e-4 增大为了3e-4;其次是原来图片预处理只加入了随机水平翻转,本次加入了小角度的随机翻转,随机缩放剪裁,光照变化等,发现有更好的效果。测试集准确率有了很大的提升。从训练后的准确率图像也可以看到,训练准确率和测试准确率很接近甚至能够超过。之前没有做这个改进之前,都是训练准确率远大于测试准确率。

有个疑问是为啥必须要把图片尺寸设置为(299,299)?(244,244)会报错

关键代码示例:

import torchvision.transforms as transforms# 定义猴痘识别的 transforms
train_transforms = transforms.Compose([transforms.Resize([299, 299]),            # 统一图片尺寸transforms.RandomHorizontalFlip(p=0.5),  # 随机水平翻转transforms.RandomRotation(degrees=15),   # 小角度随机旋转transforms.RandomResizedCrop(size=299, scale=(0.8, 1.2)),  # 随机缩放裁剪transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.1),  # 光照变化transforms.ToTensor(),                   # 转换为 Tensor 格式transforms.Normalize(                    # 标准化mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])

Inception V1 简介

什么是Inception V1?

Inception V1,也被称为GoogLeNet,是Google在2014年ILSVRC比赛中提出的一种卷积神经网络(CNN)架构,并且在比赛中获得了冠军。与当时流行的VGGNet相比,Inception V1在保持相似性能的同时,显著减少了参数数量,从而提高了计算效率。

Inception Module的核心思想

Inception V1的核心是Inception Module,它通过并行的卷积操作在同一层提取不同尺度的特征。这种设计不仅增加了网络的深度,还有效地捕捉了多种特征信息。

具体来说,一个Inception Module通常包含以下几个分支:

  1. 1x1卷积分支:用于降低输入特征图的通道数,减少计算量。
  2. 1x1卷积后接3x3卷积分支:先用1x1卷积降维,再进行3x3卷积提取特征。
  3. 1x1卷积后接5x5卷积分支:类似于3x3分支,但使用更大的卷积核以捕捉更大范围的特征。
  4. 3x3最大池化后接1x1卷积分支:先进行池化操作,再用1x1卷积进行特征整合。

通过将这些分支的输出在通道维度上拼接,Inception Module能够在同一层次上整合多种尺度的信息,提升模型的表达能力。

1x1卷积的作用

1x1卷积主要用于降维,即减少特征图的通道数。这不仅降低了网络的参数量和计算量,还间接增加了网络的深度,有助于提升模型性能。例如:

  • 原始输入:100x100x128
  • 经过1x1卷积降维到32通道,再进行5x5卷积,输出仍为100x100x256
  • 参数量由原来的约8.192×10⁹降低到2.048×10⁹

辅助分类器

Inception V1还引入了辅助分类器,主要有两个作用:

  1. 缓解梯度消失:通过在中间层添加分类器,帮助梯度更好地传播。
  2. 模型融合:将中间层的输出用于分类,增强模型的泛化能力。

不过,在实际应用中,这些辅助分类器通常在训练过程中使用,推理时会被去掉。

Inception V3 简介

Inception v3由谷歌研究员Christian Szegedy等人在2015年的论文《Rethinking the Inception Architecture for Computer Vision》中提出。Inception v3是Inception网络系列的第三个版本,它在ImageNet图像识别竞赛中取得了优异成绩,尤其是在大规模图像识别任务中表现出色。

Inception v3的主要特点如下:

1:更深的网络结构:Inception v3比之前的Inception网络结构更深,包含了48层卷积层。这使得网络可以提取更多层次的特征,从而在图像识别任务上取得更好的效果。

2:使用Factorized Convolutions:Inception v3采用了Factorized Convolutions(分解卷积),将较大的卷积核分解为多个较小的卷积核。这种方法可以降低网络的参数数量,减少计算复杂度,同时保持良好的性能。

3:使用Batch Normalization:Inceptionv3在每个卷积层之后都添加了Batch Normalization(BN),这有助于网络的收敛和泛化能力。BN可以减少Internal Covariate Shift(内部协变量偏移)现象,加快训练速度,同时提高模型的鲁棒性。

4:辅助分类器:Inception v3引入了辅助分类器,可以在网络训练过程中提供额外的梯度信息,帮助网络更好地学习特征。辅助分类器位于网络的某个中间层,其输出会与主分类器的输出进行加权融合,从而得到最终的预测结果。

5:基于RMSProp的优化器:Inception v3使用了RMSProp优化器进行训练。相比于传统的随机梯度下降(SGD)方法,RMSProp可以自适应地调整学习率,使得训练过程更加稳定,收敛速度更快。

Inception v3在图像分类、物体检测和图像分割等计算机视觉任务中均取得了显著的效果。然而,由于其较大的网络结构和计算复杂度,Inception v3在实际应用中可能需要较高的硬件要求。

import torch
import torch.nn as nn
import torchvision
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
import torchvision.models as models
import torch.nn.functional as F
from collections import OrderedDict import os,PIL,pathlib
import matplotlib.pyplot as plt
import warningswarnings.filterwarnings('ignore') # 忽略警告信息plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False   # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率

1. 设置GPU

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

2. 导入数据及处理部分

# 获取数据分布情况
path_dir = './data/weather_recognize/weather_photos/'
path_dir = pathlib.Path(path_dir)paths = list(path_dir.glob('*'))
# classNames = [str(path).split("\\")[-1] for path in paths] # ['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
classNames = [path.parts[-1] for path in paths]
classNames
['cloudy', 'rain', 'shine', 'sunrise']
# 定义transforms 并处理数据
# train_transforms = transforms.Compose([
#     transforms.Resize([224,224]),      # 将输入图片resize成统一尺寸
#     transforms.RandomHorizontalFlip(), # 随机水平翻转
#     transforms.ToTensor(),             # 将PIL Image 或 numpy.ndarray 装换为tensor,并归一化到[0,1]之间
#     transforms.Normalize(              # 标准化处理 --> 转换为标准正太分布(高斯分布),使模型更容易收敛
#         mean = [0.485,0.456,0.406],    # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
#         std = [0.229,0.224,0.225]
#     )
# ])# 定义猴痘识别的 transforms 并处理数据
train_transforms = transforms.Compose([transforms.Resize([299, 299]),            # 统一图片尺寸transforms.RandomHorizontalFlip(p=0.5),  # 随机水平翻转transforms.RandomRotation(degrees=15),   # 小角度随机旋转transforms.RandomResizedCrop(size=299, scale=(0.8, 1.2)),  # 随机缩放裁剪transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.1),  # 光照变化transforms.ToTensor(),                   # 转换为 Tensor 格式transforms.Normalize(                    # 标准化mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])test_transforms = transforms.Compose([transforms.Resize([299,299]),transforms.ToTensor(),transforms.Normalize(mean = [0.485,0.456,0.406],std = [0.229,0.224,0.225])
])
total_data = datasets.ImageFolder('./data/weather_recognize/weather_photos/',transform = train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 1125Root location: ./data/weather_recognize/weather_photos/StandardTransform
Transform: Compose(Resize(size=[299, 299], interpolation=bilinear, max_size=None, antialias=True)RandomHorizontalFlip(p=0.5)RandomRotation(degrees=[-15.0, 15.0], interpolation=nearest, expand=False, fill=0)RandomResizedCrop(size=(299, 299), scale=(0.8, 1.2), ratio=(0.75, 1.3333), interpolation=bilinear, antialias=True)ColorJitter(brightness=(0.8, 1.2), contrast=(0.8, 1.2), saturation=(0.9, 1.1), hue=None)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))

3. 划分数据集

# 设置随机种子
torch.manual_seed(42)# 划分数据集
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_sizetrain_dataset,test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset
(<torch.utils.data.dataset.Subset at 0x29e06793df0>,<torch.utils.data.dataset.Subset at 0x29e06793dc0>)
# 定义DataLoader用于数据集的加载batch_size = 32 # 如使用多显卡,请确保 batch_size 是显卡数量的倍数。train_dl = torch.utils.data.DataLoader(train_dataset,batch_size = batch_size,shuffle = True,num_workers = 1
)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size = batch_size,shuffle = True,num_workers = 1
)
# 观察数据维度
for X,y in test_dl:print("Shape of X [N,C,H,W]: ",X.shape)print("Shape of y: ", y.shape,y.dtype)break
Shape of X [N,C,H,W]:  torch.Size([32, 3, 299, 299])
Shape of y:  torch.Size([32]) torch.int64

4. 模型构建部分

import torch
import torch.nn as nn
import torch.nn.functional as Fclass InceptionA(nn.Module):def __init__(self, in_channels, pool_features):super(InceptionA, self).__init__()self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1) # 1self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch5x5 = self.branch5x5_1(x)branch5x5 = self.branch5x5_2(branch5x5)branch3x3dbl = self.branch3x3dbl_1(x)branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]return torch.cat(outputs, 1)class InceptionB(nn.Module):def __init__(self, in_channels, channels_7x7):super(InceptionB, self).__init__()self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)c7 = channels_7x7self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1)self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0))self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3))self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch7x7 = self.branch7x7_1(x)branch7x7 = self.branch7x7_2(branch7x7)branch7x7 = self.branch7x7_3(branch7x7)branch7x7dbl = self.branch7x7dbl_1(x)branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]return torch.cat(outputs, 1)class InceptionC(nn.Module):def __init__(self, in_channels):super(InceptionC, self).__init__()self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1)self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1)self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch3x3 = self.branch3x3_1(x)branch3x3 = [self.branch3x3_2a(branch3x3),self.branch3x3_2b(branch3x3),]branch3x3 = torch.cat(branch3x3, 1)branch3x3dbl = self.branch3x3dbl_1(x)branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)branch3x3dbl = [self.branch3x3dbl_3a(branch3x3dbl),self.branch3x3dbl_3b(branch3x3dbl),]branch3x3dbl = torch.cat(branch3x3dbl, 1)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]return torch.cat(outputs, 1)class ReductionA(nn.Module):def __init__(self, in_channels):super(ReductionA, self).__init__()self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2)self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2)def forward(self, x):branch3x3 = self.branch3x3(x)branch3x3dbl = self.branch3x3dbl_1(x)branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)outputs = [branch3x3, branch3x3dbl, branch_pool]return torch.cat(outputs, 1)class ReductionB(nn.Module):def __init__(self, in_channels):super(ReductionB, self).__init__()self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2)self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2)def forward(self, x):branch3x3 = self.branch3x3_1(x)branch3x3 = self.branch3x3_2(branch3x3)branch7x7x3 = self.branch7x7x3_1(x)branch7x7x3 = self.branch7x7x3_2(branch7x7x3)branch7x7x3 = self.branch7x7x3_3(branch7x7x3)branch7x7x3 = self.branch7x7x3_4(branch7x7x3)branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)outputs = [branch3x3, branch7x7x3, branch_pool]return torch.cat(outputs, 1)class InceptionAux(nn.Module):def __init__(self, in_channels, num_classes):super(InceptionAux, self).__init__()self.conv0 = BasicConv2d(in_channels, 128, kernel_size=1)self.conv1 = BasicConv2d(128, 768, kernel_size=5)self.conv1.stddev = 0.01self.fc = nn.Linear(768, num_classes)self.fc.stddev = 0.001def forward(self, x):# 17 x 17 x 768x = F.avg_pool2d(x, kernel_size=5, stride=3)# 5 x 5 x 768x = self.conv0(x)# 5 x 5 x 128x = self.conv1(x)# 1 x 1 x 768x = x.view(x.size(0), -1)# 768x = self.fc(x)# 1000return xclass BasicConv2d(nn.Module):def __init__(self, in_channels, out_channels, **kwargs):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)self.bn = nn.BatchNorm2d(out_channels, eps=0.001)def forward(self, x):x = self.conv(x)x = self.bn(x)return F.relu(x, inplace=True)class InceptionV3(nn.Module):def __init__(self, num_classes=1000, aux_logits=False, transform_input=False):super(InceptionV3, self).__init__()self.aux_logits = aux_logitsself.transform_input = transform_inputself.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)self.Mixed_5b = InceptionA(192, pool_features=32)self.Mixed_5c = InceptionA(256, pool_features=64)self.Mixed_5d = InceptionA(288, pool_features=64)self.Mixed_6a = ReductionA(288)self.Mixed_6b = InceptionB(768, channels_7x7=128)self.Mixed_6c = InceptionB(768, channels_7x7=160)self.Mixed_6d = InceptionB(768, channels_7x7=160)self.Mixed_6e = InceptionB(768, channels_7x7=192)if aux_logits:self.AuxLogits = InceptionAux(768, num_classes)self.Mixed_7a = ReductionB(768)self.Mixed_7b = InceptionC(1280)self.Mixed_7c = InceptionC(2048)self.fc = nn.Linear(2048, num_classes)def forward(self, x):if self.transform_input: # 1x = x.clone()x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5# 299 x 299 x 3x = self.Conv2d_1a_3x3(x)# 149 x 149 x 32x = self.Conv2d_2a_3x3(x)# 147 x 147 x 32x = self.Conv2d_2b_3x3(x)# 147 x 147 x 64x = F.max_pool2d(x, kernel_size=3, stride=2)# 73 x 73 x 64x = self.Conv2d_3b_1x1(x)# 73 x 73 x 80x = self.Conv2d_4a_3x3(x)# 71 x 71 x 192x = F.max_pool2d(x, kernel_size=3, stride=2)# 35 x 35 x 192x = self.Mixed_5b(x)# 35 x 35 x 256x = self.Mixed_5c(x)# 35 x 35 x 288x = self.Mixed_5d(x)# 35 x 35 x 288x = self.Mixed_6a(x)# 17 x 17 x 768x = self.Mixed_6b(x)# 17 x 17 x 768x = self.Mixed_6c(x)# 17 x 17 x 768x = self.Mixed_6d(x)# 17 x 17 x 768x = self.Mixed_6e(x)# 17 x 17 x 768if self.training and self.aux_logits:aux = self.AuxLogits(x)# 17 x 17 x 768x = self.Mixed_7a(x)# 8 x 8 x 1280x = self.Mixed_7b(x)# 8 x 8 x 2048x = self.Mixed_7c(x)# 8 x 8 x 2048x = F.avg_pool2d(x, kernel_size=8)# 1 x 1 x 2048x = F.dropout(x, training=self.training)# 1 x 1 x 2048x = x.view(x.size(0), -1)# 2048x = self.fc(x)# 1000 (num_classes)if self.training and self.aux_logits:return x, auxreturn x
model = InceptionV3(num_classes=len(classNames)).to(device)
model
InceptionV3((Conv2d_1a_3x3): BasicConv2d((conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(Conv2d_2a_3x3): BasicConv2d((conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(Conv2d_2b_3x3): BasicConv2d((conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(Conv2d_3b_1x1): BasicConv2d((conv): Conv2d(64, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(80, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(Conv2d_4a_3x3): BasicConv2d((conv): Conv2d(80, 192, kernel_size=(3, 3), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(Mixed_5b): InceptionA((branch1x1): BasicConv2d((conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_1): BasicConv2d((conv): Conv2d(192, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_2): BasicConv2d((conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_1): BasicConv2d((conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_2): BasicConv2d((conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_3): BasicConv2d((conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_5c): InceptionA((branch1x1): BasicConv2d((conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_1): BasicConv2d((conv): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_2): BasicConv2d((conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_1): BasicConv2d((conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_2): BasicConv2d((conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_3): BasicConv2d((conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_5d): InceptionA((branch1x1): BasicConv2d((conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_1): BasicConv2d((conv): Conv2d(288, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch5x5_2): BasicConv2d((conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_1): BasicConv2d((conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_2): BasicConv2d((conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_3): BasicConv2d((conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_6a): ReductionA((branch3x3): BasicConv2d((conv): Conv2d(288, 384, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_1): BasicConv2d((conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_2): BasicConv2d((conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_3): BasicConv2d((conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_6b): InceptionB((branch1x1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_1): BasicConv2d((conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_2): BasicConv2d((conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_3): BasicConv2d((conv): Conv2d(128, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_1): BasicConv2d((conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_2): BasicConv2d((conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_3): BasicConv2d((conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_4): BasicConv2d((conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_5): BasicConv2d((conv): Conv2d(128, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_6c): InceptionB((branch1x1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_1): BasicConv2d((conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_2): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_3): BasicConv2d((conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_1): BasicConv2d((conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_2): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_3): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_4): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_5): BasicConv2d((conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_6d): InceptionB((branch1x1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_1): BasicConv2d((conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_2): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_3): BasicConv2d((conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_1): BasicConv2d((conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_2): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_3): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_4): BasicConv2d((conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_5): BasicConv2d((conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_6e): InceptionB((branch1x1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_2): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7_3): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_2): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_3): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_4): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7dbl_5): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_7a): ReductionB((branch3x3_1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2): BasicConv2d((conv): Conv2d(192, 320, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7x3_1): BasicConv2d((conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7x3_2): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7x3_3): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch7x7x3_4): BasicConv2d((conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_7b): InceptionC((branch1x1): BasicConv2d((conv): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_1): BasicConv2d((conv): Conv2d(1280, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2a): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2b): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_1): BasicConv2d((conv): Conv2d(1280, 448, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_2): BasicConv2d((conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_3a): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_3b): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(1280, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(Mixed_7c): InceptionC((branch1x1): BasicConv2d((conv): Conv2d(2048, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_1): BasicConv2d((conv): Conv2d(2048, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2a): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3_2b): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_1): BasicConv2d((conv): Conv2d(2048, 448, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_2): BasicConv2d((conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_3a): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch3x3dbl_3b): BasicConv2d((conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)(bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))(branch_pool): BasicConv2d((conv): Conv2d(2048, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)))(fc): Linear(in_features=2048, out_features=4, bias=True)
)
# 查看模型详情
import torchsummary as summary
summary.summary(model,(3,299,299))
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1         [-1, 32, 149, 149]             864BatchNorm2d-2         [-1, 32, 149, 149]              64BasicConv2d-3         [-1, 32, 149, 149]               0Conv2d-4         [-1, 32, 147, 147]           9,216BatchNorm2d-5         [-1, 32, 147, 147]              64BasicConv2d-6         [-1, 32, 147, 147]               0Conv2d-7         [-1, 64, 147, 147]          18,432BatchNorm2d-8         [-1, 64, 147, 147]             128BasicConv2d-9         [-1, 64, 147, 147]               0Conv2d-10           [-1, 80, 73, 73]           5,120BatchNorm2d-11           [-1, 80, 73, 73]             160BasicConv2d-12           [-1, 80, 73, 73]               0Conv2d-13          [-1, 192, 71, 71]         138,240BatchNorm2d-14          [-1, 192, 71, 71]             384BasicConv2d-15          [-1, 192, 71, 71]               0Conv2d-16           [-1, 64, 35, 35]          12,288BatchNorm2d-17           [-1, 64, 35, 35]             128BasicConv2d-18           [-1, 64, 35, 35]               0Conv2d-19           [-1, 48, 35, 35]           9,216BatchNorm2d-20           [-1, 48, 35, 35]              96BasicConv2d-21           [-1, 48, 35, 35]               0Conv2d-22           [-1, 64, 35, 35]          76,800BatchNorm2d-23           [-1, 64, 35, 35]             128BasicConv2d-24           [-1, 64, 35, 35]               0Conv2d-25           [-1, 64, 35, 35]          12,288BatchNorm2d-26           [-1, 64, 35, 35]             128BasicConv2d-27           [-1, 64, 35, 35]               0Conv2d-28           [-1, 96, 35, 35]          55,296BatchNorm2d-29           [-1, 96, 35, 35]             192BasicConv2d-30           [-1, 96, 35, 35]               0Conv2d-31           [-1, 96, 35, 35]          82,944BatchNorm2d-32           [-1, 96, 35, 35]             192BasicConv2d-33           [-1, 96, 35, 35]               0Conv2d-34           [-1, 32, 35, 35]           6,144BatchNorm2d-35           [-1, 32, 35, 35]              64BasicConv2d-36           [-1, 32, 35, 35]               0InceptionA-37          [-1, 256, 35, 35]               0Conv2d-38           [-1, 64, 35, 35]          16,384BatchNorm2d-39           [-1, 64, 35, 35]             128BasicConv2d-40           [-1, 64, 35, 35]               0Conv2d-41           [-1, 48, 35, 35]          12,288BatchNorm2d-42           [-1, 48, 35, 35]              96BasicConv2d-43           [-1, 48, 35, 35]               0Conv2d-44           [-1, 64, 35, 35]          76,800BatchNorm2d-45           [-1, 64, 35, 35]             128BasicConv2d-46           [-1, 64, 35, 35]               0Conv2d-47           [-1, 64, 35, 35]          16,384BatchNorm2d-48           [-1, 64, 35, 35]             128BasicConv2d-49           [-1, 64, 35, 35]               0Conv2d-50           [-1, 96, 35, 35]          55,296BatchNorm2d-51           [-1, 96, 35, 35]             192BasicConv2d-52           [-1, 96, 35, 35]               0Conv2d-53           [-1, 96, 35, 35]          82,944BatchNorm2d-54           [-1, 96, 35, 35]             192BasicConv2d-55           [-1, 96, 35, 35]               0Conv2d-56           [-1, 64, 35, 35]          16,384BatchNorm2d-57           [-1, 64, 35, 35]             128BasicConv2d-58           [-1, 64, 35, 35]               0InceptionA-59          [-1, 288, 35, 35]               0Conv2d-60           [-1, 64, 35, 35]          18,432BatchNorm2d-61           [-1, 64, 35, 35]             128BasicConv2d-62           [-1, 64, 35, 35]               0Conv2d-63           [-1, 48, 35, 35]          13,824BatchNorm2d-64           [-1, 48, 35, 35]              96BasicConv2d-65           [-1, 48, 35, 35]               0Conv2d-66           [-1, 64, 35, 35]          76,800BatchNorm2d-67           [-1, 64, 35, 35]             128BasicConv2d-68           [-1, 64, 35, 35]               0Conv2d-69           [-1, 64, 35, 35]          18,432BatchNorm2d-70           [-1, 64, 35, 35]             128BasicConv2d-71           [-1, 64, 35, 35]               0Conv2d-72           [-1, 96, 35, 35]          55,296BatchNorm2d-73           [-1, 96, 35, 35]             192BasicConv2d-74           [-1, 96, 35, 35]               0Conv2d-75           [-1, 96, 35, 35]          82,944BatchNorm2d-76           [-1, 96, 35, 35]             192BasicConv2d-77           [-1, 96, 35, 35]               0Conv2d-78           [-1, 64, 35, 35]          18,432BatchNorm2d-79           [-1, 64, 35, 35]             128BasicConv2d-80           [-1, 64, 35, 35]               0InceptionA-81          [-1, 288, 35, 35]               0Conv2d-82          [-1, 384, 17, 17]         995,328BatchNorm2d-83          [-1, 384, 17, 17]             768BasicConv2d-84          [-1, 384, 17, 17]               0Conv2d-85           [-1, 64, 35, 35]          18,432BatchNorm2d-86           [-1, 64, 35, 35]             128BasicConv2d-87           [-1, 64, 35, 35]               0Conv2d-88           [-1, 96, 35, 35]          55,296BatchNorm2d-89           [-1, 96, 35, 35]             192BasicConv2d-90           [-1, 96, 35, 35]               0Conv2d-91           [-1, 96, 17, 17]          82,944BatchNorm2d-92           [-1, 96, 17, 17]             192BasicConv2d-93           [-1, 96, 17, 17]               0ReductionA-94          [-1, 768, 17, 17]               0Conv2d-95          [-1, 192, 17, 17]         147,456BatchNorm2d-96          [-1, 192, 17, 17]             384BasicConv2d-97          [-1, 192, 17, 17]               0Conv2d-98          [-1, 128, 17, 17]          98,304BatchNorm2d-99          [-1, 128, 17, 17]             256BasicConv2d-100          [-1, 128, 17, 17]               0Conv2d-101          [-1, 128, 17, 17]         114,688BatchNorm2d-102          [-1, 128, 17, 17]             256BasicConv2d-103          [-1, 128, 17, 17]               0Conv2d-104          [-1, 192, 17, 17]         172,032BatchNorm2d-105          [-1, 192, 17, 17]             384BasicConv2d-106          [-1, 192, 17, 17]               0Conv2d-107          [-1, 128, 17, 17]          98,304BatchNorm2d-108          [-1, 128, 17, 17]             256BasicConv2d-109          [-1, 128, 17, 17]               0Conv2d-110          [-1, 128, 17, 17]         114,688BatchNorm2d-111          [-1, 128, 17, 17]             256BasicConv2d-112          [-1, 128, 17, 17]               0Conv2d-113          [-1, 128, 17, 17]         114,688BatchNorm2d-114          [-1, 128, 17, 17]             256BasicConv2d-115          [-1, 128, 17, 17]               0Conv2d-116          [-1, 128, 17, 17]         114,688BatchNorm2d-117          [-1, 128, 17, 17]             256BasicConv2d-118          [-1, 128, 17, 17]               0Conv2d-119          [-1, 192, 17, 17]         172,032BatchNorm2d-120          [-1, 192, 17, 17]             384BasicConv2d-121          [-1, 192, 17, 17]               0Conv2d-122          [-1, 192, 17, 17]         147,456BatchNorm2d-123          [-1, 192, 17, 17]             384BasicConv2d-124          [-1, 192, 17, 17]               0InceptionB-125          [-1, 768, 17, 17]               0Conv2d-126          [-1, 192, 17, 17]         147,456BatchNorm2d-127          [-1, 192, 17, 17]             384BasicConv2d-128          [-1, 192, 17, 17]               0Conv2d-129          [-1, 160, 17, 17]         122,880BatchNorm2d-130          [-1, 160, 17, 17]             320BasicConv2d-131          [-1, 160, 17, 17]               0Conv2d-132          [-1, 160, 17, 17]         179,200BatchNorm2d-133          [-1, 160, 17, 17]             320BasicConv2d-134          [-1, 160, 17, 17]               0Conv2d-135          [-1, 192, 17, 17]         215,040BatchNorm2d-136          [-1, 192, 17, 17]             384BasicConv2d-137          [-1, 192, 17, 17]               0Conv2d-138          [-1, 160, 17, 17]         122,880BatchNorm2d-139          [-1, 160, 17, 17]             320BasicConv2d-140          [-1, 160, 17, 17]               0Conv2d-141          [-1, 160, 17, 17]         179,200BatchNorm2d-142          [-1, 160, 17, 17]             320BasicConv2d-143          [-1, 160, 17, 17]               0Conv2d-144          [-1, 160, 17, 17]         179,200BatchNorm2d-145          [-1, 160, 17, 17]             320BasicConv2d-146          [-1, 160, 17, 17]               0Conv2d-147          [-1, 160, 17, 17]         179,200BatchNorm2d-148          [-1, 160, 17, 17]             320BasicConv2d-149          [-1, 160, 17, 17]               0Conv2d-150          [-1, 192, 17, 17]         215,040BatchNorm2d-151          [-1, 192, 17, 17]             384BasicConv2d-152          [-1, 192, 17, 17]               0Conv2d-153          [-1, 192, 17, 17]         147,456BatchNorm2d-154          [-1, 192, 17, 17]             384BasicConv2d-155          [-1, 192, 17, 17]               0InceptionB-156          [-1, 768, 17, 17]               0Conv2d-157          [-1, 192, 17, 17]         147,456BatchNorm2d-158          [-1, 192, 17, 17]             384BasicConv2d-159          [-1, 192, 17, 17]               0Conv2d-160          [-1, 160, 17, 17]         122,880BatchNorm2d-161          [-1, 160, 17, 17]             320BasicConv2d-162          [-1, 160, 17, 17]               0Conv2d-163          [-1, 160, 17, 17]         179,200BatchNorm2d-164          [-1, 160, 17, 17]             320BasicConv2d-165          [-1, 160, 17, 17]               0Conv2d-166          [-1, 192, 17, 17]         215,040BatchNorm2d-167          [-1, 192, 17, 17]             384BasicConv2d-168          [-1, 192, 17, 17]               0Conv2d-169          [-1, 160, 17, 17]         122,880BatchNorm2d-170          [-1, 160, 17, 17]             320BasicConv2d-171          [-1, 160, 17, 17]               0Conv2d-172          [-1, 160, 17, 17]         179,200BatchNorm2d-173          [-1, 160, 17, 17]             320BasicConv2d-174          [-1, 160, 17, 17]               0Conv2d-175          [-1, 160, 17, 17]         179,200BatchNorm2d-176          [-1, 160, 17, 17]             320BasicConv2d-177          [-1, 160, 17, 17]               0Conv2d-178          [-1, 160, 17, 17]         179,200BatchNorm2d-179          [-1, 160, 17, 17]             320BasicConv2d-180          [-1, 160, 17, 17]               0Conv2d-181          [-1, 192, 17, 17]         215,040BatchNorm2d-182          [-1, 192, 17, 17]             384BasicConv2d-183          [-1, 192, 17, 17]               0Conv2d-184          [-1, 192, 17, 17]         147,456BatchNorm2d-185          [-1, 192, 17, 17]             384BasicConv2d-186          [-1, 192, 17, 17]               0InceptionB-187          [-1, 768, 17, 17]               0Conv2d-188          [-1, 192, 17, 17]         147,456BatchNorm2d-189          [-1, 192, 17, 17]             384BasicConv2d-190          [-1, 192, 17, 17]               0Conv2d-191          [-1, 192, 17, 17]         147,456BatchNorm2d-192          [-1, 192, 17, 17]             384BasicConv2d-193          [-1, 192, 17, 17]               0Conv2d-194          [-1, 192, 17, 17]         258,048BatchNorm2d-195          [-1, 192, 17, 17]             384BasicConv2d-196          [-1, 192, 17, 17]               0Conv2d-197          [-1, 192, 17, 17]         258,048BatchNorm2d-198          [-1, 192, 17, 17]             384BasicConv2d-199          [-1, 192, 17, 17]               0Conv2d-200          [-1, 192, 17, 17]         147,456BatchNorm2d-201          [-1, 192, 17, 17]             384BasicConv2d-202          [-1, 192, 17, 17]               0Conv2d-203          [-1, 192, 17, 17]         258,048BatchNorm2d-204          [-1, 192, 17, 17]             384BasicConv2d-205          [-1, 192, 17, 17]               0Conv2d-206          [-1, 192, 17, 17]         258,048BatchNorm2d-207          [-1, 192, 17, 17]             384BasicConv2d-208          [-1, 192, 17, 17]               0Conv2d-209          [-1, 192, 17, 17]         258,048BatchNorm2d-210          [-1, 192, 17, 17]             384BasicConv2d-211          [-1, 192, 17, 17]               0Conv2d-212          [-1, 192, 17, 17]         258,048BatchNorm2d-213          [-1, 192, 17, 17]             384BasicConv2d-214          [-1, 192, 17, 17]               0Conv2d-215          [-1, 192, 17, 17]         147,456BatchNorm2d-216          [-1, 192, 17, 17]             384BasicConv2d-217          [-1, 192, 17, 17]               0InceptionB-218          [-1, 768, 17, 17]               0Conv2d-219          [-1, 192, 17, 17]         147,456BatchNorm2d-220          [-1, 192, 17, 17]             384BasicConv2d-221          [-1, 192, 17, 17]               0Conv2d-222            [-1, 320, 8, 8]         552,960BatchNorm2d-223            [-1, 320, 8, 8]             640BasicConv2d-224            [-1, 320, 8, 8]               0Conv2d-225          [-1, 192, 17, 17]         147,456BatchNorm2d-226          [-1, 192, 17, 17]             384BasicConv2d-227          [-1, 192, 17, 17]               0Conv2d-228          [-1, 192, 17, 17]         258,048BatchNorm2d-229          [-1, 192, 17, 17]             384BasicConv2d-230          [-1, 192, 17, 17]               0Conv2d-231          [-1, 192, 17, 17]         258,048BatchNorm2d-232          [-1, 192, 17, 17]             384BasicConv2d-233          [-1, 192, 17, 17]               0Conv2d-234            [-1, 192, 8, 8]         331,776BatchNorm2d-235            [-1, 192, 8, 8]             384BasicConv2d-236            [-1, 192, 8, 8]               0ReductionB-237           [-1, 1280, 8, 8]               0Conv2d-238            [-1, 320, 8, 8]         409,600BatchNorm2d-239            [-1, 320, 8, 8]             640BasicConv2d-240            [-1, 320, 8, 8]               0Conv2d-241            [-1, 384, 8, 8]         491,520BatchNorm2d-242            [-1, 384, 8, 8]             768BasicConv2d-243            [-1, 384, 8, 8]               0Conv2d-244            [-1, 384, 8, 8]         442,368BatchNorm2d-245            [-1, 384, 8, 8]             768BasicConv2d-246            [-1, 384, 8, 8]               0Conv2d-247            [-1, 384, 8, 8]         442,368BatchNorm2d-248            [-1, 384, 8, 8]             768BasicConv2d-249            [-1, 384, 8, 8]               0Conv2d-250            [-1, 448, 8, 8]         573,440BatchNorm2d-251            [-1, 448, 8, 8]             896BasicConv2d-252            [-1, 448, 8, 8]               0Conv2d-253            [-1, 384, 8, 8]       1,548,288BatchNorm2d-254            [-1, 384, 8, 8]             768BasicConv2d-255            [-1, 384, 8, 8]               0Conv2d-256            [-1, 384, 8, 8]         442,368BatchNorm2d-257            [-1, 384, 8, 8]             768BasicConv2d-258            [-1, 384, 8, 8]               0Conv2d-259            [-1, 384, 8, 8]         442,368BatchNorm2d-260            [-1, 384, 8, 8]             768BasicConv2d-261            [-1, 384, 8, 8]               0Conv2d-262            [-1, 192, 8, 8]         245,760BatchNorm2d-263            [-1, 192, 8, 8]             384BasicConv2d-264            [-1, 192, 8, 8]               0InceptionC-265           [-1, 2048, 8, 8]               0Conv2d-266            [-1, 320, 8, 8]         655,360BatchNorm2d-267            [-1, 320, 8, 8]             640BasicConv2d-268            [-1, 320, 8, 8]               0Conv2d-269            [-1, 384, 8, 8]         786,432BatchNorm2d-270            [-1, 384, 8, 8]             768BasicConv2d-271            [-1, 384, 8, 8]               0Conv2d-272            [-1, 384, 8, 8]         442,368BatchNorm2d-273            [-1, 384, 8, 8]             768BasicConv2d-274            [-1, 384, 8, 8]               0Conv2d-275            [-1, 384, 8, 8]         442,368BatchNorm2d-276            [-1, 384, 8, 8]             768BasicConv2d-277            [-1, 384, 8, 8]               0Conv2d-278            [-1, 448, 8, 8]         917,504BatchNorm2d-279            [-1, 448, 8, 8]             896BasicConv2d-280            [-1, 448, 8, 8]               0Conv2d-281            [-1, 384, 8, 8]       1,548,288BatchNorm2d-282            [-1, 384, 8, 8]             768BasicConv2d-283            [-1, 384, 8, 8]               0Conv2d-284            [-1, 384, 8, 8]         442,368BatchNorm2d-285            [-1, 384, 8, 8]             768BasicConv2d-286            [-1, 384, 8, 8]               0Conv2d-287            [-1, 384, 8, 8]         442,368BatchNorm2d-288            [-1, 384, 8, 8]             768BasicConv2d-289            [-1, 384, 8, 8]               0Conv2d-290            [-1, 192, 8, 8]         393,216BatchNorm2d-291            [-1, 192, 8, 8]             384BasicConv2d-292            [-1, 192, 8, 8]               0InceptionC-293           [-1, 2048, 8, 8]               0Linear-294                    [-1, 4]           8,196
================================================================
Total params: 21,793,764
Trainable params: 21,793,764
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 1.02
Forward/backward pass size (MB): 224.12
Params size (MB): 83.14
Estimated Total Size (MB): 308.28
----------------------------------------------------------------

5. 设置超参数:定义损失函数,学习率,以及根据学习率定义优化器等

# loss_fn = nn.CrossEntropyLoss() # 创建损失函数# learn_rate = 1e-3 # 初始学习率
# def adjust_learning_rate(optimizer,epoch,start_lr):
#     # 每两个epoch 衰减到原来的0.98
#     lr = start_lr * (0.92 ** (epoch//2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lr# optimizer = torch.optim.Adam(model.parameters(),lr=learn_rate)
# 调用官方接口示例
loss_fn = nn.CrossEntropyLoss()# learn_rate = 1e-4  
learn_rate = 3e-4
lambda1 = lambda epoch:(0.92**(epoch//2))optimizer = torch.optim.Adam(model.parameters(),lr = learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1) # 选定调整方法

6. 训练函数

# 训练函数
def train(dataloader,model,loss_fn,optimizer):size = len(dataloader.dataset) # 训练集大小num_batches = len(dataloader) # 批次数目train_loss,train_acc = 0,0for X,y in dataloader:X,y = X.to(device),y.to(device)# 计算预测误差pred = model(X)loss = loss_fn(pred,y)# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()# 记录acc与losstrain_acc += (pred.argmax(1)==y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc,train_loss

7. 测试函数

# 测试函数
def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc,test_loss = 0,0with torch.no_grad():for X,y in dataloader:X,y = X.to(device),y.to(device)# 计算losspred = model(X)loss = loss_fn(pred,y)test_acc += (pred.argmax(1)==y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc,test_loss

8. 正式训练

import copyepochs = 60train_acc = []
train_loss = []
test_acc = []
test_loss = []best_acc = 0.0# 检查 GPU 可用性并打印设备信息
if torch.cuda.is_available():for i in range(torch.cuda.device_count()):print(f"GPU {i}: {torch.cuda.get_device_name(i)}")print(f"Initial Memory Allocated: {torch.cuda.memory_allocated(i)/1024**2:.2f} MB")print(f"Initial Memory Cached: {torch.cuda.memory_reserved(i)/1024**2:.2f} MB")
else:print("No GPU available. Using CPU.")# 多显卡设置 当前使用的是使用 PyTorch 自带的 DataParallel,后续如有需要可以设置为DistributedDataParallel,这是更加高效的方式
# 且多卡不一定比单卡效果就好,需要调整优化
# if torch.cuda.device_count() > 1:
#     print(f"Using {torch.cuda.device_count()} GPUs")
#     model = nn.DataParallel(model)
# model = model.to('cuda')for epoch in range(epochs):# 更新学习率——使用自定义学习率时使用# adjust_learning_rate(optimizer,epoch,learn_rate)model.train()epoch_train_acc,epoch_train_loss = train(train_dl,model,loss_fn,optimizer)scheduler.step() # 更新学习率——调用官方动态学习率时使用model.eval()epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f},Lr:{:.2E}')print(template.format(epoch+1,epoch_train_acc*100,epoch_train_loss,epoch_test_acc*100,epoch_test_loss,lr))# 实时监控 GPU 状态if torch.cuda.is_available():for i in range(torch.cuda.device_count()):print(f"GPU {i} Usage:")print(f"  Memory Allocated: {torch.cuda.memory_allocated(i)/1024**2:.2f} MB")print(f"  Memory Cached: {torch.cuda.memory_reserved(i)/1024**2:.2f} MB")print(f"  Max Memory Allocated: {torch.cuda.max_memory_allocated(i)/1024**2:.2f} MB")print(f"  Max Memory Cached: {torch.cuda.max_memory_reserved(i)/1024**2:.2f} MB")print('Done','best_acc: ',best_acc)
GPU 0: NVIDIA GeForce RTX 4070 Laptop GPU
Initial Memory Allocated: 92.00 MB
Initial Memory Cached: 524.00 MB
Epoch: 1,Train_acc:75.0%,Train_loss:0.664,Test_acc:35.6%,Test_loss:3.178,Lr:3.00E-04
GPU 0 Usage:Memory Allocated: 442.28 MBMemory Cached: 4330.00 MBMax Memory Allocated: 3518.43 MBMax Memory Cached: 4330.00 MB
Epoch: 2,Train_acc:85.4%,Train_loss:0.473,Test_acc:75.6%,Test_loss:1.198,Lr:2.76E-04
GPU 0 Usage:Memory Allocated: 441.65 MBMemory Cached: 4366.00 MBMax Memory Allocated: 3601.60 MBMax Memory Cached: 4366.00 MB
Epoch: 3,Train_acc:84.9%,Train_loss:0.458,Test_acc:87.6%,Test_loss:0.368,Lr:2.76E-04
GPU 0 Usage:Memory Allocated: 442.17 MBMemory Cached: 4366.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4366.00 MB
Epoch: 4,Train_acc:86.0%,Train_loss:0.446,Test_acc:87.1%,Test_loss:0.414,Lr:2.54E-04
GPU 0 Usage:Memory Allocated: 443.47 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch: 5,Train_acc:89.0%,Train_loss:0.383,Test_acc:89.3%,Test_loss:0.277,Lr:2.54E-04
GPU 0 Usage:Memory Allocated: 440.66 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch: 6,Train_acc:87.6%,Train_loss:0.382,Test_acc:88.4%,Test_loss:0.378,Lr:2.34E-04
GPU 0 Usage:Memory Allocated: 438.65 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch: 7,Train_acc:87.6%,Train_loss:0.389,Test_acc:87.6%,Test_loss:0.297,Lr:2.34E-04
GPU 0 Usage:Memory Allocated: 440.96 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch: 8,Train_acc:89.2%,Train_loss:0.325,Test_acc:88.4%,Test_loss:0.267,Lr:2.15E-04
GPU 0 Usage:Memory Allocated: 441.04 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch: 9,Train_acc:89.1%,Train_loss:0.341,Test_acc:87.6%,Test_loss:0.309,Lr:2.15E-04
GPU 0 Usage:Memory Allocated: 441.02 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:10,Train_acc:88.7%,Train_loss:0.340,Test_acc:92.4%,Test_loss:0.233,Lr:1.98E-04
GPU 0 Usage:Memory Allocated: 439.24 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:11,Train_acc:89.9%,Train_loss:0.307,Test_acc:90.2%,Test_loss:0.254,Lr:1.98E-04
GPU 0 Usage:Memory Allocated: 440.40 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:12,Train_acc:89.0%,Train_loss:0.322,Test_acc:91.6%,Test_loss:0.250,Lr:1.82E-04
GPU 0 Usage:Memory Allocated: 442.53 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:13,Train_acc:92.7%,Train_loss:0.242,Test_acc:92.0%,Test_loss:0.223,Lr:1.82E-04
GPU 0 Usage:Memory Allocated: 441.67 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:14,Train_acc:91.1%,Train_loss:0.311,Test_acc:91.1%,Test_loss:0.224,Lr:1.67E-04
GPU 0 Usage:Memory Allocated: 440.82 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:15,Train_acc:90.1%,Train_loss:0.300,Test_acc:93.3%,Test_loss:0.196,Lr:1.67E-04
GPU 0 Usage:Memory Allocated: 442.16 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:16,Train_acc:89.1%,Train_loss:0.334,Test_acc:89.3%,Test_loss:0.333,Lr:1.54E-04
GPU 0 Usage:Memory Allocated: 440.50 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:17,Train_acc:89.7%,Train_loss:0.335,Test_acc:89.8%,Test_loss:0.232,Lr:1.54E-04
GPU 0 Usage:Memory Allocated: 441.43 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:18,Train_acc:93.1%,Train_loss:0.260,Test_acc:90.7%,Test_loss:0.260,Lr:1.42E-04
GPU 0 Usage:Memory Allocated: 441.24 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:19,Train_acc:91.3%,Train_loss:0.231,Test_acc:92.0%,Test_loss:0.179,Lr:1.42E-04
GPU 0 Usage:Memory Allocated: 441.50 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:20,Train_acc:90.4%,Train_loss:0.238,Test_acc:92.4%,Test_loss:0.656,Lr:1.30E-04
GPU 0 Usage:Memory Allocated: 440.64 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:21,Train_acc:93.3%,Train_loss:0.195,Test_acc:92.9%,Test_loss:0.189,Lr:1.30E-04
GPU 0 Usage:Memory Allocated: 441.06 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:22,Train_acc:93.7%,Train_loss:0.261,Test_acc:91.1%,Test_loss:0.206,Lr:1.20E-04
GPU 0 Usage:Memory Allocated: 441.77 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:23,Train_acc:94.2%,Train_loss:0.195,Test_acc:92.4%,Test_loss:0.205,Lr:1.20E-04
GPU 0 Usage:Memory Allocated: 441.27 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:24,Train_acc:91.9%,Train_loss:0.236,Test_acc:93.8%,Test_loss:0.186,Lr:1.10E-04
GPU 0 Usage:Memory Allocated: 443.12 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:25,Train_acc:93.4%,Train_loss:0.309,Test_acc:94.2%,Test_loss:0.149,Lr:1.10E-04
GPU 0 Usage:Memory Allocated: 443.39 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3602.83 MBMax Memory Cached: 4368.00 MB
Epoch:26,Train_acc:93.2%,Train_loss:0.177,Test_acc:92.4%,Test_loss:0.192,Lr:1.01E-04
GPU 0 Usage:Memory Allocated: 441.71 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.01 MBMax Memory Cached: 4368.00 MB
Epoch:27,Train_acc:94.9%,Train_loss:0.222,Test_acc:92.0%,Test_loss:0.227,Lr:1.01E-04
GPU 0 Usage:Memory Allocated: 443.70 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.28 MBMax Memory Cached: 4368.00 MB
Epoch:28,Train_acc:93.8%,Train_loss:0.200,Test_acc:94.2%,Test_loss:0.144,Lr:9.34E-05
GPU 0 Usage:Memory Allocated: 441.37 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.28 MBMax Memory Cached: 4368.00 MB
Epoch:29,Train_acc:94.9%,Train_loss:0.158,Test_acc:92.4%,Test_loss:0.168,Lr:9.34E-05
GPU 0 Usage:Memory Allocated: 441.79 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.28 MBMax Memory Cached: 4368.00 MB
Epoch:30,Train_acc:95.7%,Train_loss:0.151,Test_acc:93.3%,Test_loss:0.161,Lr:8.59E-05
GPU 0 Usage:Memory Allocated: 442.08 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:31,Train_acc:94.7%,Train_loss:0.137,Test_acc:94.2%,Test_loss:0.136,Lr:8.59E-05
GPU 0 Usage:Memory Allocated: 441.25 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:32,Train_acc:95.9%,Train_loss:0.133,Test_acc:94.2%,Test_loss:0.197,Lr:7.90E-05
GPU 0 Usage:Memory Allocated: 442.79 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:33,Train_acc:94.7%,Train_loss:0.144,Test_acc:94.2%,Test_loss:0.366,Lr:7.90E-05
GPU 0 Usage:Memory Allocated: 442.73 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:34,Train_acc:96.2%,Train_loss:0.109,Test_acc:92.0%,Test_loss:0.248,Lr:7.27E-05
GPU 0 Usage:Memory Allocated: 442.30 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:35,Train_acc:96.0%,Train_loss:0.138,Test_acc:92.9%,Test_loss:0.177,Lr:7.27E-05
GPU 0 Usage:Memory Allocated: 440.91 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:36,Train_acc:96.7%,Train_loss:0.179,Test_acc:92.4%,Test_loss:0.206,Lr:6.69E-05
GPU 0 Usage:Memory Allocated: 441.46 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:37,Train_acc:95.2%,Train_loss:0.148,Test_acc:91.1%,Test_loss:0.219,Lr:6.69E-05
GPU 0 Usage:Memory Allocated: 440.19 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:38,Train_acc:94.0%,Train_loss:0.162,Test_acc:93.3%,Test_loss:0.157,Lr:6.15E-05
GPU 0 Usage:Memory Allocated: 443.07 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:39,Train_acc:97.4%,Train_loss:0.117,Test_acc:92.9%,Test_loss:0.279,Lr:6.15E-05
GPU 0 Usage:Memory Allocated: 442.75 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:40,Train_acc:95.0%,Train_loss:0.203,Test_acc:92.0%,Test_loss:0.590,Lr:5.66E-05
GPU 0 Usage:Memory Allocated: 442.67 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:41,Train_acc:96.2%,Train_loss:0.127,Test_acc:93.3%,Test_loss:0.199,Lr:5.66E-05
GPU 0 Usage:Memory Allocated: 442.07 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:42,Train_acc:96.2%,Train_loss:0.110,Test_acc:96.0%,Test_loss:0.132,Lr:5.21E-05
GPU 0 Usage:Memory Allocated: 441.30 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:43,Train_acc:97.3%,Train_loss:0.132,Test_acc:94.2%,Test_loss:0.175,Lr:5.21E-05
GPU 0 Usage:Memory Allocated: 442.24 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:44,Train_acc:96.0%,Train_loss:0.111,Test_acc:93.3%,Test_loss:0.179,Lr:4.79E-05
GPU 0 Usage:Memory Allocated: 440.67 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:45,Train_acc:97.8%,Train_loss:0.065,Test_acc:93.8%,Test_loss:0.175,Lr:4.79E-05
GPU 0 Usage:Memory Allocated: 441.61 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:46,Train_acc:97.7%,Train_loss:0.078,Test_acc:92.9%,Test_loss:0.188,Lr:4.41E-05
GPU 0 Usage:Memory Allocated: 441.65 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:47,Train_acc:97.3%,Train_loss:0.090,Test_acc:92.4%,Test_loss:0.183,Lr:4.41E-05
GPU 0 Usage:Memory Allocated: 441.28 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:48,Train_acc:98.1%,Train_loss:0.065,Test_acc:95.1%,Test_loss:0.110,Lr:4.06E-05
GPU 0 Usage:Memory Allocated: 441.88 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:49,Train_acc:97.8%,Train_loss:0.068,Test_acc:92.9%,Test_loss:0.181,Lr:4.06E-05
GPU 0 Usage:Memory Allocated: 442.35 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:50,Train_acc:98.7%,Train_loss:0.061,Test_acc:94.2%,Test_loss:0.153,Lr:3.73E-05
GPU 0 Usage:Memory Allocated: 441.16 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:51,Train_acc:98.3%,Train_loss:0.149,Test_acc:92.0%,Test_loss:0.185,Lr:3.73E-05
GPU 0 Usage:Memory Allocated: 442.35 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:52,Train_acc:97.8%,Train_loss:0.067,Test_acc:90.7%,Test_loss:0.237,Lr:3.43E-05
GPU 0 Usage:Memory Allocated: 441.16 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:53,Train_acc:98.3%,Train_loss:0.056,Test_acc:93.3%,Test_loss:0.158,Lr:3.43E-05
GPU 0 Usage:Memory Allocated: 442.35 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:54,Train_acc:99.0%,Train_loss:0.101,Test_acc:95.6%,Test_loss:0.151,Lr:3.16E-05
GPU 0 Usage:Memory Allocated: 441.16 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:55,Train_acc:98.4%,Train_loss:0.111,Test_acc:94.2%,Test_loss:0.155,Lr:3.16E-05
GPU 0 Usage:Memory Allocated: 442.35 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:56,Train_acc:98.1%,Train_loss:0.065,Test_acc:94.7%,Test_loss:0.133,Lr:2.91E-05
GPU 0 Usage:Memory Allocated: 441.16 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:57,Train_acc:97.0%,Train_loss:0.137,Test_acc:94.7%,Test_loss:0.141,Lr:2.91E-05
GPU 0 Usage:Memory Allocated: 442.35 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:58,Train_acc:98.6%,Train_loss:0.054,Test_acc:92.4%,Test_loss:0.171,Lr:2.67E-05
GPU 0 Usage:Memory Allocated: 441.16 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:59,Train_acc:98.7%,Train_loss:0.043,Test_acc:95.1%,Test_loss:0.176,Lr:2.67E-05
GPU 0 Usage:Memory Allocated: 442.35 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Epoch:60,Train_acc:98.7%,Train_loss:0.084,Test_acc:92.4%,Test_loss:0.211,Lr:2.46E-05
GPU 0 Usage:Memory Allocated: 441.16 MBMemory Cached: 4368.00 MBMax Memory Allocated: 3604.74 MBMax Memory Cached: 4368.00 MB
Done best_acc:  0.96

9. 结果可视化

epochs_range = range(epochs)plt.figure(figsize = (12,3))plt.subplot(1,2,1)
plt.plot(epochs_range,train_acc,label = 'Training Accuracy')
plt.plot(epochs_range,test_acc,label = 'Test Accuracy')
plt.legend(loc = 'lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1,2,2)
plt.plot(epochs_range,train_loss,label = 'Test Accuracy')
plt.plot(epochs_range,test_loss,label = 'Test Loss')
plt.legend(loc = 'lower right')
plt.title('Training and validation Loss')
plt.show()

在这里插入图片描述

10. 模型的保存

# 自定义模型保存
# 状态字典保存
torch.save(model.state_dict(),'./模型参数/J9_InceptionV3_model_state_dict.pth') # 仅保存状态字典# 定义模型用来加载参数
best_model = InceptionV3(num_classes=len(classNames)).to(device)best_model.load_state_dict(torch.load('./模型参数/J9_InceptionV3_model_state_dict.pth')) # 加载状态字典到模型
<All keys matched successfully>

11.使用训练好的模型进行预测

# 指定路径图片预测
from PIL import Image
import torchvision.transforms as transformsclasses = list(total_data.class_to_idx) # classes = list(total_data.class_to_idx)def predict_one_image(image_path,model,transform,classes):test_img = Image.open(image_path).convert('RGB')# plt.imshow(test_img) # 展示待预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)print(output) # 观察模型预测结果的输出数据_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./data/weather_recognize/weather_photos/sunrise/sunrise10.jpg',model = model,transform = test_transforms,classes = classes)
tensor([[-3.4108, -5.2150, -6.3457,  8.8984]], device='cuda:0',grad_fn=<AddmmBackward0>)
预测结果是:sunrise
classes
['cloudy', 'rain', 'shine', 'sunrise']

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/64850.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重温设计模式--中介者模式

中介者模式介绍 定义&#xff1a;中介者模式是一种行为设计模式&#xff0c;它通过引入一个中介者对象来封装一系列对象之间的交互。中介者使得各个对象之间不需要显式地相互引用&#xff0c;从而降低了它们之间的耦合度&#xff0c;并且可以更方便地对它们的交互进行管理和协调…

【开源库 | xlsxio】C/C++读写.xlsx文件,xlsxio 在 Linux(Ubuntu18.04)的编译、交叉编译

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; ⏰发布时间⏰&#xff1a; 2024-12-20 …

NACA四位数字翼型

NACA四位数字翼型&#xff0c;以NACA 2412为例 第一位数字2 —相对弯度 第二位数字4 —相对弯度所有位置&#xff08;单位化后的&#xff09; 最末两位数字12 —相对厚度 所有NACA四位数字翼型的&#xff08;相对厚度所在的位置&#xff09;

DataX与DataX-Web安装与使用

DataX github地址&#xff1a;DataX/introduction.md at master alibaba/DataX GitHub 环境准备 Linux环境系统 JDK&#xff08;1.8及其以上版本&#xff0c;推荐1.8&#xff09; Python&#xff08;2或者3都可以&#xff09; Apache Maven 3.x&#xff08;源码编译安装…

电子应用设计方案69:智能护眼台灯系统设计

智能护眼台灯系统设计 一、引言 随着人们对眼睛健康的重视&#xff0c;智能护眼台灯成为了越来越多人的选择。本设计方案旨在打造一款功能丰富、护眼效果显著且智能便捷的台灯系统。 二、系统概述 1. 系统目标 - 提供无频闪、无蓝光危害的均匀柔和光线&#xff0c;保护眼睛。…

cesium 常见的 entity 列表

Cesium 是一个用于创建3D地球和地图的开源JavaScript库。它允许开发者在Web浏览器中展示地理空间数据,并且支持多种类型的空间实体(entities)。 Entities是Cesium中用于表示地面上或空中的对象的一种高层次、易于使用的接口。它们可以用来表示点、线、多边形、模型等,并且可…

在Visual Studio 2022中配置C++计算机视觉库Opencv

本文主要介绍下载OpenCV库以及在Visual Studio 2022中配置、编译C计算机视觉库OpenCv的方法 1.Opencv库安装 ​ 首先&#xff0c;我们需要安装OpenCV库&#xff0c;作为一个开源库&#xff0c;我们可以直接在其官网下载Releases - OpenCV&#xff0c;如果官网下载过慢&#x…

【Java基础面试题035】什么是Java泛型的上下界限定符?

回答重点 Java泛型的上下界限定符用于对泛型类型参数进行范围限制&#xff0c;主要有上界限定符和下届限定符。 1&#xff09;上界限定符 (? extends T)&#xff1a; 定义&#xff1a;通配符?的类型必须是T或者T的子类&#xff0c;保证集合元素一定是T或者T的子类作用&…

WPF+MVVM案例实战与特效(四十七)-实现一个路径绘图的自定义按钮控件

文章目录 1、案例效果2、创建自定义 PathButton 控件1、定义 PathButton 类2、设计样式与控件模板3、代码解释3、控件使用4、直接在 XAML 中绑定命令3、源代码获取4、总结1、案例效果 2、创建自定义 PathButton 控件 1、定义 PathButton 类 首先,我们需要创建一个新的类 Pat…

共模电感的工作原理

共模电感也称为共模扼流线圈&#xff0c;是一种抑制共模干扰的器件&#xff0c;它是由两个尺寸相同&#xff0c;匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上&#xff0c;形成的一个四端器件。当共模电流流过共模电感时&#xff0c;磁芯上的两个线圈产生的磁通相互叠加&a…

外连接转AntiJoin的应用场景与限制条件 | OceanBase SQL 查询改写系列

在《SQL 改写系列&#xff1a;外连接转内连接的常见场景与错误》一文中&#xff0c;我们了解到谓词条件可以过滤掉连接结果中的 null 情形的&#xff0c;将外连接转化为内连接的做法是可行的&#xff0c;正如图1中路径(a)所示。此时&#xff0c;敏锐的你或许会进一步思考&#…

二、windows环境下vscode使用wsl教程

本篇文件介绍了在windows系统使用vscode如何连接使用wsl&#xff0c;方便wsl在vscode进行开发。 1、插件安装 双击桌面vscode&#xff0c;按快捷键CtrlShiftX打开插件市场&#xff0c;搜索【WSL】点击安装即可。 2、开启WSL的linux子系统 点击左下方图标【Open a Remote Win…

因子问题(真EASY)

描述 任给两个正整数N、M&#xff0c;求一个最小的正整数a&#xff0c;使得a和(M-a)都是N的因子。 输入描述 包括两个整数N、M。N不超过1,000,000。 输出描述 输出一个整数a&#xff0c;表示结果。如果某个案例中满足条件的正整数不存在&#xff0c;则在对应行输出-1 用例…

2024 高频 Java 面试合集整理 (1000 道附答案解析)

2024 年马上就快要过去了&#xff0c;总结了上半年各类 Java 面试题&#xff0c;初中级和中高级都有&#xff0c;包括 Java 基础&#xff0c;JVM 知识面试题库&#xff0c;开源框架面试题库&#xff0c;操作系统面试题库&#xff0c;多线程面试题库&#xff0c;Tcp 面试题库&am…

(2024.12)Ubuntu20.04安装openMVS<成功>.colmap<成功>和openMVG<失败>记录

一、安装openMVS 官方文档&#xff1a;https://github.com/cdcseacave/openMVS/wiki/Building sudo apt-get -y install git mercurial cmake libpng-dev libjpeg-dev libtiff-dev libglu1-mesa-dev eigen git clone https://gitlab.com/libeigen/eigen --branch 3.4 mkdi…

自动控制系统综合与LabVIEW实现

自动控制系统综合是为了优化系统性能&#xff0c;确保其可靠性、稳定性和灵活性。常用方法包括动态性能优化、稳态误差分析、鲁棒性设计等。结合LabVIEW&#xff0c;可以通过图形化编程、高效数据采集与处理来实现系统综合。本文将阐述具体方法&#xff0c;并结合硬件选型提供实…

【恶意软件检测】一种基于API语义提取的Android恶意软件检测方法(期刊等级:CCF-B、Q2)

一种基于API语义提取的Android恶意软件检测方法 A novel Android malware detection method with API semantics extraction 摘要 由于Android框架和恶意软件的持续演变&#xff0c;使用过时应用程序训练的传统恶意软件检测方法在有效识别复杂演化的恶意软件方面已显不足。为…

FLTK - build fltk-1.1.10 on vs2019

文章目录 FLTK - build fltk-1.1.10 on vs2019概述笔记buildtest测试程序运行 END FLTK - build fltk-1.1.10 on vs2019 概述 看书上用到了fltk-1.1.10, 用vs2019试试能否正常编译使用? 笔记 build 从官网下载fltk-1.1.10-source.tar.bz2 用7zip解开 fltk-1.1.10-source.…

业财融合,决策有据:工程项目管理的财务新视角

在工程项目管理领域&#xff0c;业财融合正开启全新篇章。传统模式下&#xff0c;业务与财务各自为政&#xff0c;常导致信息滞后、决策盲目。如今&#xff0c;借助先进理念与技术&#xff0c;二者紧密相连。 在项目规划阶段&#xff0c;财务部门依据业务需求与市场趋势&#…

汽车IVI中控开发入门及进阶(44):杰发科智能座舱芯片

概述: 杰发科技自成立以来,一直专注于汽车电子芯片及相关系统的研发与设计。 产品布局: 合作伙伴: 杰发科技不断提升产品设计能力和产品工艺,确保产品达 到更高的质量标准。目前杰发科技已通过ISO9001质 量管理体系与CMMIL3认证。 杰发科技长期合作的供应商(芯片代工厂、…