Python 绘图工具详解:使用 Matplotlib、Seaborn 和 Pyecharts 绘制散点图

目录

  • 数据可视化
    • 1.使用 matplotlib 库
        • matplotlib 库
    • 2 .使用 seaborn 库
        • seaborn 库
    • 3 .使用 pyecharts库
        • pyecharts库
      • 注意
        • 1. 确保安装了所有必要的库
        • 2. 检查Jupyter Notebook的版本
        • 3. 使用`render()`方法保存为HTML文件
        • 4. 使用`IFrame`在Notebook中显示HTML文件
        • 5. 检查是否有其他输出干扰
        • 6. 重启Jupyter Notebook
  • 比较三种库的特点
    • 选择建议
      • 目标
  • 总结

在这里插入图片描述

数据可视化

1.使用 matplotlib 库

import matplotlib.pyplot as plt# 创建数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]# 使用matplotlib绘制散点图
plt.scatter(x, y, label='Data Points', color='blue', marker='o')# 添加标签和标题
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Scatter Plot')# 添加图例和网格
plt.legend()
plt.grid(True)# 显示图形
plt.show()

在这里插入图片描述

matplotlib 库
  • 导入库import matplotlib.pyplot as plt
  • 创建数据x = [1, 2, 3, 4, 5]y = [2, 3, 5, 7, 11]
  • 绘制散点图plt.scatter(x, y, label='Data Points', color='blue', marker='o')
  • 添加标签和标题plt.xlabel('X-axis')plt.ylabel('Y-axis')plt.title('Scatter Plot')
  • 添加图例和网格plt.legend()plt.grid(True)
  • 显示图形plt.show()

2 .使用 seaborn 库

import seaborn as sns
import matplotlib.pyplot as plt# 创建数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]# 使用Seaborn绘制散点图
sns.scatterplot(x=x, y=y, label='Data Points')# 添加标签和标题
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Scatter Plot')# 添加图例和网格
plt.legend()
plt.grid(True)# 显示图形
plt.show()

在这里插入图片描述

seaborn 库
  • 导入库import seaborn as snsimport matplotlib.pyplot as plt
  • 创建数据x = [1, 2, 3, 4, 5]y = [2, 3, 5, 7, 11]
  • 绘制散点图sns.scatterplot(x=x, y=y, label='Data Points')
  • 添加标签和标题plt.xlabel('X-axis')plt.ylabel('Y-axis')plt.title('Scatter Plot')
  • 添加图例和网格plt.legend()plt.grid(True)
  • 显示图形plt.show()

3 .使用 pyecharts库

from pyecharts.charts import Scatter
from pyecharts import options as opts# 创建数据
data = [(1, 2), (2, 3), (3, 5), (4, 7), (5, 11)]# 创建散点图对象
scatter = (Scatter().add_xaxis([x for x, y in data]).add_yaxis("Data Points", [y for x, y in data]).set_series_opts(label_opts=opts.LabelOpts(is_show=False)).set_global_opts(title_opts=opts.TitleOpts(title="Scatter Plot"),xaxis_opts=opts.AxisOpts(name="X-axis"),yaxis_opts=opts.AxisOpts(name="Y-axis"),)
)# 渲染图表
# 如果在Jupyter Notebook中运行,使用render_notebook()
scatter.render_notebook()# 如果在普通Python脚本中运行,使用render()保存为HTML文件
# scatter.render("scatter_plot.html")
pyecharts库
  • 导入库from pyecharts.charts import Scatterfrom pyecharts import options as opts
  • 创建数据data = [(1, 2), (2, 3), (3, 5), (4, 7), (5, 11)]
  • 创建散点图对象scatter = Scatter().add_xaxis([x for x, y in data]).add_yaxis("Data Points", [y for x, y in data])
  • 设置系列选项set_series_opts(label_opts=opts.LabelOpts(is_show=False))
  • 设置全局选项set_global_opts(title_opts=opts.TitleOpts(title="Scatter Plot"), xaxis_opts=opts.AxisOpts(name="X-axis"), yaxis_opts=opts.AxisOpts(name="Y-axis"))
  • 渲染图表:在Jupyter Notebook中使用render_notebook(),在普通Python脚本中使用render("scatter_plot.html")

注意

如果你在Jupyter Notebook中运行这段代码,但是图表没有显示出来,可能是因为render_notebook()方法没有被正确执行,或者你的环境配置有问题。下面是一些可能的解决方案:

1. 确保安装了所有必要的库

首先,确保已经安装了pyecharts及其相关依赖。可以使用以下命令来安装:

pip install pyecharts
2. 检查Jupyter Notebook的版本

确保使用的Jupyter Notebook版本支持render_notebook()方法。通常情况下,较新版本的Jupyter Notebook应该没有问题。

3. 使用render()方法保存为HTML文件

如果render_notebook()方法不起作用,可以尝试将图表保存为HTML文件,然后手动打开这个文件查看图表。

# 渲染图表并保存为HTML文件
scatter.render("scatter_plot.html")

保存后,你可以在文件浏览器中找到scatter_plot.html文件并双击打开它,查看图表。

4. 使用IFrame在Notebook中显示HTML文件

如果你希望在Jupyter Notebook中直接显示HTML文件,可以使用IPython.display.IFrame来实现。

from IPython.display import IFrame# 渲染图表并保存为HTML文件
scatter.render("scatter_plot.html")# 在Notebook中显示HTML文件
IFrame('scatter_plot.html', width=800, height=600)
5. 检查是否有其他输出干扰

有时候,Jupyter Notebook中的其他输出可能会干扰图表的显示。确保在执行绘图代码之前没有其他输出。

6. 重启Jupyter Notebook

如果以上方法都不奏效,可以尝试重启Jupyter Notebook服务器,有时这可以解决一些临时性的问题。


比较三种库的特点

特点适用场景
matplotlib基础库,支持自定义,静态图表科研论文,数据分析报告
seaborn基于 matplotlib,样式美观统计分析,探索性数据分析
pyecharts交互性强,适合网页展示数据展示,交互式仪表板

选择建议

  • 如果需要在科研或数据分析中生成静态图表,matplotlib 是基础且可靠的选择。
  • 需要更多美观效果和便捷的统计分析时,seaborn 提供了友好的界面。
  • 若要在网页中展示交互式图表,pyecharts 能生成包含交互功能的 HTML 文件,非常适合网络发布。

目标

  • 学习和实践:通过实际操作,掌握使用 matplotlibseabornpyecharts 绘制散点图的方法。
  • 比较不同库的特点:了解每个库的优缺点,选择最适合具体需求的工具。
  • 数据可视化:通过散点图展示数据之间的关系,帮助更好地理解和解释数据。

总结

嘿,数据可视化这事儿暂时要告一段落啦,不过以后有机会的话,咱还能再写写关于数据可视化的东西。😎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/63155.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【链表】力扣 141. 环形链表

一、题目 二、思路 龟兔进行赛跑 龟的速度是 1,兔的速度是 2龟兔从同一起点出发,若 龟追上兔 则说明 有环 存在;若追不上,则说明无环。 三、代码 /*** Definition for singly-linked list.* class ListNode {* int val;* …

Spring中使用Async进行异步功能开发实战-以大文件上传为例

目录 前言 一、场景再现 1、Event的同步机制 二、性能优化 1、异步支持配置 2、自定义处理线程池扩展 3、将线程池配置类绑定到异步方法 三、总结 前言 在之前的博客中,曾将讲了在SpringBoot中如何使用Event来进行大文件上传的解耦,原文地址&am…

PyTorch 深度学习框架简介:灵活、高效的 AI 开发工具

PyTorch 深度学习框架简介:灵活、高效的 AI 开发工具 PyTorch 作为一个深度学习框架,以其灵活性、可扩展性和高效性广受欢迎。无论是在研究领域进行创新实验,还是在工业界构建生产级的深度学习模型,PyTorch 都能提供所需的工具和…

Qt 2D绘图之五:图形视图框架的结构、坐标系统和框架间的事件处理与传播

参考文章链接: Qt 2D绘图之五:图形视图框架的结构和坐标系统 Qt 2D绘图之六:图形视图框架的事件处理与传播 图形视图框架的结构 在前面讲的基本绘图中,我们可以自己绘制各种图形,并且控制它们。但是,如果需要同时绘制很多个相同或不同的图形,并且要控制它们的移动、…

Qt开发技巧(二十四)滚动部件的滑动问题,Qt设置时区问题,自定义窗体样式不生效问题,编码格式问题,给按钮左边加个图,最小化后的卡死假象

继续记录一些Qt开发中的技巧操作: 1.滚动部件的滑动问题 再Linux嵌入式设备上,有时候一个页面的子部件太多,一屏放不下是需要做页面滑动,可以使用“QScrollArea”控件,拖来一个“QScrollArea”控件,将子部件…

基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面

目录 1.算法仿真效果 2.算法涉及理论知识概要 3.MATLAB核心程序 4.完整算法代码文件获得 1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印): 仿真操作步骤可参考程序配套的操作视频。 2.算法涉及理论知识概要 在现代社会…

计算机毕业设计项目基于SSM闪光点映像摄影工作室预约系统

源代码数据库LW文档(1万字以上)开题报告答辩稿 部署教程代码讲解代码时间修改教程 一、开发工具、运行环境、开发技术 开发工具 1、操作系统:Window操作系统 2、开发工具:IntelliJ IDEA或者Eclipse 3、数据库存储&#xff1a…

人工智能大模型培训讲师叶梓:Llama Factory 微调模型实战分享提纲

LLaMA-Factory ——一个高效、易用的大模型训练与微调平台。它支持多种预训练模型,并且提供了丰富的训练算法,包括增量预训练、多模态指令监督微调、奖励模型训练等。 LLaMA-Factory的优势在于其简单易用的界面和强大的功能。用户可以在不编写任何代码的…

Creating Server TCP listening socket *:6379: bind: No error

启动redis报错:Creating Server TCP listening socket *:6379: bind: No error 解决方案: 1、直接在命令行中输入 redis-cli.exe 2、输入shutdown,关闭 3、输exit,退出 4、重新输入 redis-server.exe redis.windows.conf&…

qt QSettings详解

1、概述 QSettings是Qt框架中用于应用程序配置和持久化数据的一个类。它提供了一种便捷的方式来存储和读取应用程序的设置,如窗口大小、位置、用户偏好等。QSettings支持多种存储格式,包括INI文件、Windows注册表(仅限Windows平台&#xff0…

Excel中日期格式“年月日 时间”修改为“年月日”

需求: 将Excel中“yyyy-mm-dd hh:mm:ss”格式的时间转换为“yyyy-mm-dd”格式的时间,选中转换后的时间时编辑栏中依然会显示“yyyy-mm-dd hh:mm:ss”格式。 方法一、在原数据列进行转换: 1、选中需要转换的数据列,右键--【设置…

解决Clang 18+不能链接GCC14编译的库的问题

前面笔者的博文MSYS2 MinGW64使用Protobuf新版本踩坑,有提到使用最新的Clang 19.1.4版本在MinGW下无法正常链接使用了Protobuf 28.3的项目,因为MinGW下的项目默认都是使用GCC来编译的,所以如果开发者使用Clang编译器,必然会出现链…

DHCP和DNS

DHCP(动态主机配置协议)和DNS(域名系统)是计算机网络中两个重要的协议,它们在网络的管理和使用中发挥着关键作用。 DHCP(动态主机配置协议) 基本功能 自动分配IP地址:DHCP允许网…

Unity 设计模式-策略模式(Strategy Pattern)详解

策略模式(Strategy Pattern)是一种行为型设计模式,定义了一系列算法,并将每种算法封装到独立的类中,使得它们可以互相替换。策略模式让算法可以在不影响客户端的情况下独立变化,客户端通过与这些策略对象进…

C++远程调试vscode配置

C++远程调试vscode配置 一、环境说明二、安装gdbserver2.1 安装方案一2.2 安装方案二源码安装三、VSCode配置gdb远程调试一、环境说明 目标主机:ubuntu 22.04.02 -server(x86_64) 远程调试的主机。 宿主机:ubuntu 22.04.05 -desktop (x86_64) 自己控制的主机。 二、安装g…

【Vue】Scoped、组件间通信、Props检验

目录 Scoped 作用 *原理 组件通信 前置知识 什么是组件通信 为什么需要组件通信 如何进行组件通信 如何辨别两个组件的关系 父子组件通信 父传子 子传父 非父子组件通信 祖先传后代 语法 任意两个组件通信 步骤 Props校验 props是什么 作用 语法 组件的…

vue 一行显示的动态消息

动态消息上翻显示 效果图 特点&#xff1a; 重复的信息&#xff0c;只显示一次全部信息显示完后&#xff0c;只在轮播最后一个消息队列若最后一个消息队列只有一条信息&#xff0c;则停止轮播&#xff0c;不轮播新的消息队列进入后&#xff0c;触发新的轮播 <template&g…

使用Unity脚本模拟绳索、布料(碰撞)

效果演示&#xff1a; 脚本如下&#xff1a; using System.Collections; using System.Collections.Generic; using UnityEngine;namespace PhysicsLab {public class RopeSolver : MonoBehaviour {public Transform ParticlePrefab;public int Count 3;public int Space 1;…

基于Matlab BP神经网络的电力负荷预测模型研究与实现

随着电力系统的复杂性和规模的不断增长&#xff0c;准确的电力负荷预测对于电网的稳定性和运行效率至关重要。传统的负荷预测方法依赖于历史数据和简单的统计模型&#xff0c;但这些方法在处理非线性和动态变化的负荷数据时&#xff0c;表现出较大的局限性。近年来&#xff0c;…

MperReduce学习笔记下

自定义InputFormat合并小文件 案例需求 无论hdfs还是mapreduce&#xff0c;对于小文件都有损效率&#xff0c;实践中&#xff0c;又难免面临处理大量小文件的场景&#xff0c;此时&#xff0c;就需要有相应解决方案。 案例分析 小文件的优化无非以下几种方式&#xff1a; …