YOLOv11(Ultralytics)视频选定区域目标统计计数及跟踪

在计算机视觉的众多应用场景中,对特定区域的目标进行检测、跟踪与计数是一个常见且重要的需求。无论是在智慧交通中统计通过特定路口的车辆数量,还是在零售分析中追踪进入特定区域的顾客行为,这一功能都发挥着不可或缺的作用。

随着深度学习技术的发展,目标检测算法不断迭代升级。YOLO(You Only Look Once)系列作为目标检测领域的翘楚,以其高效、实时的特性受到广泛关注和应用。YOLOv11(Ultralytics)在检测性能和易用性方面再一次取得了显著提升。本文将给出基础教程,读者可自选区域并读取视频进行测试,本教程同样Ultralytics / YOLOv11 / YOLOv8通用,视频及摄像头均可使用。

YOLOv11环境配置教程如下。目标检测:YOLOv11(Ultralytics)环境配置,适合0基础纯小白,超详细_yolov11环境配置-CSDN博客文章浏览阅读7.8k次,点赞42次,收藏153次。YOLO11是Ultralytics公司YOLO系列实时目标检测器的最新迭代版本,它以尖端的准确性、速度和效率重新定义了可能实现的性能。在之前YOLO版本取得的显著进步基础上,YOLO11在架构和训练方法上进行了重大改进,使其成为各种计算机视觉任务中的通用选择。除了传统的目标检测外,YOLO11 还支持目标跟踪、实例分割、姿态估计、OBB定向物体检测(旋转目标检测)等视觉任务。如果已经会配置YOLOv8的环境,本文不需要重复配置,下载最新的YOLOv11训练文件即可。_yolov11环境配置https://blog.csdn.net/qq_67105081/article/details/143270109?spm=1001.2014.3001.5502

主要使用ultralytics的solutions.ObjectCounter中count方法(不同版本函数名称不一样,但是YOLOv11往后都是count函数),具体代码如下,本文代码需搭配ultralytics8.3.20版本 下载 。

import cv2
from ultralytics import YOLO, solutionscap = cv2.VideoCapture("dog.mp4")
assert cap.isOpened(), "读取视频异常"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))region_points = [(20, 400), (700, 400), (700, 360), (20, 360)] video_writer = cv2.VideoWriter("output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))counter = solutions.ObjectCounter(model = "yolo11n.pt",region=region_points,show_in=True,show_out=True
)
while cap.isOpened():success, im0 = cap.read()if not success:print("视频处理完成")breakcv2.putText(im0, f"Total:{counter.in_count + counter.out_count}", (80, 80), cv2.FONT_HERSHEY_SIMPLEX, 1,(255, 0, 0), 2)im0 = counter.count(im0)video_writer.write(im0)cap.release()
video_writer.release()
cv2.destroyAllWindows()

使用时需要修改region_point为自选区域,可以多个点组合成多边形,也可以两个点连成一条直线,系统会自动识别。实测ultralytics8.2.0版本多边形效果最好,可以实现检测时修改自选框位置,需要代码可以 下载 ,相应的函数也需要对应修改。

import cv2from ultralytics import YOLO, solutionsmodel = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("dog.mp4")
assert cap.isOpened(), "读取视频异常"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))region_points = [(20, 400), (700, 400), (700, 360), (20, 360)] video_writer = cv2.VideoWriter("output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))counter = solutions.ObjectCounter(view_img=True,reg_pts=region_points,names=model.names,draw_tracks=True,line_thickness=2,view_in_counts=True,view_out_counts=True,
)
while cap.isOpened():success, im0 = cap.read()if not success:print("视频处理完成")breaktracks = model.track(im0, persist=True, show=False)cv2.putText(im0, f"Total:{counter.in_counts + counter.out_counts}", (80, 80), cv2.FONT_HERSHEY_SIMPLEX, 1,(255, 0, 0), 2)im0 = counter.start_counting(im0, tracks)video_writer.write(im0)cap.release()
video_writer.release()
cv2.destroyAllWindows()

效果展示如下,目标经过自选框则计入in,离开自选框则计入out,总数在左侧显示,跟踪轨迹显示为线条(默认YOLOv11n效果一般,自训练模型效果较好)。

运行完代码后检测结果会保存为视频,本文给出代码为默认的opencv代码,如需较为完整的使用pyqt5界面写出的视频或摄像头检测代码,可私聊获取,有其它需求欢迎私聊定制,如有大佬有好的想法也欢迎一起讨论。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/61803.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构与算法——1120——时间空间效率问题求边界值

目录 1、效率问题 1、时间复杂度 1、O(1) 2、O(n) 3、O(n) 或O(n*log2n)——n倍的log以2为底n的对数 例题 4、O(n) 2、空间复杂度 3、数组和链表 2、面试题之求边界值 题目 解答 (1)-i (2)~i (3&#x…

第三十九篇 ShuffleNet V1、V2模型解析

摘要 ShuffleNet V1 ShuffleNet V1是由旷视科技(Megvii,又称Face)在2017年底提出的一种轻量级卷积神经网络架构。该网络专为移动设备和边缘计算环境设计,旨在以较低的计算资源实现高效的图像分类和其他计算机视觉任务。 特点与…

本地推流,服务器拉流全流程

本地推流,服务器拉流全流程 环境准备:准备一台服务器,其中openssl最好为1.1.1版本(可以直接使用ubuntu20.04操作系统) 服务器拉流 1、 安装环境依赖 sudo apt-get update sudo apt-get install unzip sudo apt-get…

基于Java Springboot海洋馆预约系统

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 数据…

产业用机器人中的旋转花键若损伤有何影响?

旋转花键在产业用机器人中是关键的组件之一,如果机器人中的旋转花键损坏,会对机器人的运行和性能产生一定影响。以下是可能的影响: 1、功能受限:旋转花键用于连接两个旋转部件(例如电机轴和传动轴)&#xf…

CLIP-Adapter: Better Vision-Language Models with Feature Adapters 论文解读

abstract 大规模对比视觉-语言预训练在视觉表示学习方面取得了显著进展。与传统的通过固定一组离散标签训练的视觉系统不同,(Radford et al., 2021) 引入了一种新范式,该范式在开放词汇环境中直接学习将图像与原始文本对齐。在下游任务中,通…

百度在下一盘大棋

这两天世界互联网大会在乌镇又召开了。 我看到一条新闻,今年世界互联网大会乌镇峰会发布“2024 年度中国互联网企业创新发展十大典型案例”,百度文心智能体平台入选。 这个智能体平台我最近也有所关注,接下来我就来讲讲它。 百度在下一盘大棋…

RabbitMQ4:work模型

欢迎来到“雪碧聊技术”CSDN博客! 在这里,您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者,还是具有一定经验的开发者,相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导,我将…

基于SpringBoot的数据结构系统设计与实现(源码+定制+开发)

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

100.【C语言】数据结构之二叉树的堆实现(顺序结构) 1

目录 1.顺序结构 2.示意图 ​编辑 从物理结构还原为逻辑结构的方法 3.父子节点编号的规律 4.顺序存储的前提条件 5.堆的简介 堆的定义 堆的两个重要性质 小根堆和大根堆 6.堆的插入 7.堆的实现及操作堆的函数 堆的结构体定义 堆初始化函数HeapInit 堆插入元素函…

支持多种快充协议和支持多种功能的诱骗取电协议芯片

汇铭达XSP15是一款应用于手持电动工具、智能家居、显示器、音箱等充电方案的大功率快充协议芯片,支持最大功率100W给设备快速充电,大大缩短了充电时间。芯片支持通过UART串口发送电压/电流消息供其它芯片读取。支持自动识别连接的是电脑或是充电器。支持…

Three.js 相机控制器Controls

在 3D 场景中,摄像机的控制尤为重要,因为它决定了用户如何观察和与场景互动。Three.js 提供了多种相机控制器,最常用的有 OrbitControls、TrackballControls、FlyControls 和 FirstPersonControls。OrbitControls 适合用于查看和检查 3D 模型…

CMake笔记:install(TARGETS target,...)无法安装的Debug/lib下

1. 问题描述 按如下CMake代码,无法将lib文件安装到Debug/lib或Release/lib目录下,始终安装在CMAKE_INSTALL_PREFIX/lib下。 install(TARGETS targetCONFIGURATIONS DebugLIBRARY DESTINATION Debug/lib) install(TARGETS targetCONFIGURATIONS Release…

docker安装使用Elasticsearch,解决启动后无法访问9200问题

1.docker安装、启动es docker pull elasticsearch:8.13.0docker images启动容器 docker run -d -p 9200:9200 -p 9300:9300 -e ES_JAVA_OPTS"-Xms256m -Xmx256m" --name es01 8ebd258614f1-d 后台运行-p 9200:9200 -p 9300:9300 开放与主机映射端口-e ES_JAVA_OPTS…

java-排序算法汇总

排序算法: 冒泡排序(Bubble Sort) 选择排序(Selection Sort) 插入排序(Insertion Sort) 快速排序(Quick Sort) 归并排序(Merge Sort) 堆排序&…

【笔记】自动驾驶预测与决策规划_Part7_数据驱动的预测方法

文章目录 0. 前言1. 多模态传感器的编码方式1.1 栅格化表示1.2 向量化表示 Vectornet1.3 基于点云或者多模态输入的预测1.4 基于Transformer的方法 2. 网络输出的表达形式2.1 多模态轨迹回归2.2 轨迹分类2.3 轨迹回归轨迹分类2.4 目标点预测 3.场景级别的预测和决策3.1 论文&am…

Tortoise ORM

官方文档:Tortoise ORM - Tortoise ORM v0.22.0 Documentation 简介 Tortoise ORM:异步,API和Django ORM 大多类似集成Pydantic;多用于asgi starlette / sanic / FastAPI...Sqlalchemy:支持异步,Flask / …

【大数据学习 | Spark-Core】关于distinct算子

只有shuffle类的算子能够修改分区数量,这些算子不仅仅存在自己的功能,比如分组算子groupBy,它的功能是分组但是却可以修改分区。 而这里我们要讲的distinct算子也是一个shuffle类的算子。即可以修改分区。 scala> val arr Array(1,1,2,…

java基础概念36:正则表达式1

一、正则表达式的作用 作用一:校验字符串是否满足规则;作用二:在一段文本中查找满足要求的内容。——爬虫 二、正则表达式 2-1、字符类 示例: public static void main(String[] args) {System.out.println("a".matc…

oracle的静态注册和动态注册

oracle的静态注册和动态注册 静态注册: 静态注册 : 指将实例的相关信息手动告知 listener 侦 听 器 , 可以使用netmgr,netca,oem 以及直接 vi listener.ora 文件来实现静态注册,在动态注册不稳定时使用,特点是:稳定&…