【YOLOv8】安卓端部署-1-项目介绍

【YOLOv8】安卓端部署-1-项目介绍

  • 1 什么是YOLOv8
    • 1.1 YOLOv8 的主要特性
    • 1.2 YOLOv8分割模型
      • 1.2.1 YOLACT实例分割算法之计算掩码
        • 1.2.1.1 YOLACT 的掩码原型与最终的掩码的关系
        • 1.2.1.2 插值时的目标检测中提取的物体特征
        • 1.2.1.3 coefficients(系数)作用
        • 1.2.1.4 YOLACT论文中的示意图
  • 2 环境搭建
    • 2.1 软件安装
      • 2.1.1 Visual Studio
      • 2.1.2 下载和安装nvidia显卡驱动
      • 2.1.3 下载CUDA
      • 2.1.4 安装CUDA
      • 2.1.5 下载cuDNN
      • 2.1.6 安装cuDNN
      • 2.1.7 CUDA安装测试
      • 2.1.8 安装Anaconda
      • 2.1.9 安装pytorch
    • 2.2 YOLOv8安装
      • 2.2.1 克隆YOLOv8并安装
      • 2.2.2 下载预训练权重文件
      • 2.2.3 安装测试
    • 2.3 导出ONNX模型
      • 2.3.1 修改模型
      • 2.3.2 执行命令
    • 2.4 onnx转换成NCNN文件
      • 2.4.1 自动转换
      • 2.4.2 手动转换
    • 2.5 安装Android Studio


1 什么是YOLOv8

YOLOv8 是由 Ultralytics 团队于 2023 年 1 月发布的目标检测模型,是 YOLO 系列的最新重要版本之一。YOLOv8 继承了 YOLO 的核心设计理念,即 “You Only Look Once”,强调单次前向传播即可完成图像中的目标检测任务。相比于之前的版本(如 YOLOv5 和 YOLOv7),YOLOv8 在模型架构、训练策略、特征提取和推理效率等方面做了全面改进。

1.1 YOLOv8 的主要特性

  1. 模型架构改进
    • 自适应的网络架构:YOLOv8 在 Backbone 和 Neck 部分采用了新的设计,例如利用了 CSPNetConvNeXt 的特性,进一步优化了特征提取效率和推理速度。
    • 新型的 Head 设计:YOLOv8 引入了新的预测 Head,支持不同任务(检测、分割、关键点检测等)的统一设计,简化了模型结构,并提高了预测性能。
  2. 支持多任务
    • 目标检测:YOLOv8 支持经典的目标检测任务,即在图像中检测物体并返回边界框和类别标签。
    • 实例分割:YOLOv8 集成了实例分割功能,能够精确地检测物体的轮廓,这在需要对复杂场景进行精确分割时非常有用。
    • 关键点检测:YOLOv8 还支持关键点检测任务,适用于人体姿态估计和动作识别等应用场景。
  3. 优化的训练策略
    • 自动数据增强(AutoAugment):YOLOv8 引入了自动化的数据增强策略,结合 Mosaic、MixUp 等技术,进一步提高了模型的泛化能力。
    • 标签平滑(Label Smoothing):通过引入标签平滑技术,减少了过拟合现象,并改善了模型的训练效果。
    • 先进的优化器支持:YOLOv8 默认支持 AdamW 优化器,并通过结合 Cosine Annealing 调整学习率,提升了训练效率。
  4. 高效的推理速度
    • YOLOv8 采用了更高效的卷积操作,并结合 TensorRT、ONNX 等推理框架进行优化,可以在 GPU 上实现极快的推理速度,适合于实时检测任务。
    • 对于边缘设备(如 Jetson Nano 和 Raspberry Pi),YOLOv8 也能提供良好的性能表现,满足低延迟、高精度的需求。

1.2 YOLOv8分割模型

在这里插入图片描述

YOLOv8的实例分割采用了YOLACT实例分割算法,当然和YOLACT的骨干网和颈部是不同的。

在这里插入图片描述

YOLOv8中的分割模型输出包括两个部分,一个形状为 [1, 116, 8400] 的 output0,另一个形状为 [1, 32, 160, 160] 的 output1。

output0 的第一个维度表示批次大小,始终为 1。

第二个维度由 116 个值组成,116 = 4 + 80 + 32。其中前 4 个值表示检测到的物体的边界框坐标(x,y,宽度和高度),其余 80 个值表示物体属于每个类别的概率。最后 32 值是 32 个掩码原型的系数(coefficients),可以通过处理它们来生成任意数量物体的掩码。

第三个维度有 8400 个值 — 可能检测到的物体数量(8400 = 80 × 80 + 40 × 40 + 20 × 20)。

output1 包含一个由 32 个掩码组成的数组,每个掩码的尺寸为 160 × 160 像素。

要获得检测到的物体的最终掩码,首先需要从第一个输出 output0 中选择最佳概率,对应于感兴趣的物体,并记住该物体掩码的索引。

然后,可以使用掩码的索引从第二个输出中获取该物体的掩码。为了获得物体的最终掩码,需要将第二个输出 output1 中的物体掩码的大小和点插值到输入图像的尺寸上,乘以 4。因为掩码最初是在 160x160 像素的图像上生成的,如果输入尺寸为 640x640 像素,则需要将掩码缩放 4 倍以适应输入图像。

1.2.1 YOLACT实例分割算法之计算掩码

  1. 首先,YOLACT 通过目标检测部分检测出图像中的物体,并获得每个物体的边界框坐标 (x, y, width, height) 以及每个类别的概率。

  2. 然后,YOLACT 从另一个输出中获取与每个物体相对应的掩码。这个输出是一个包含多个掩码原型的数组,每个掩码原型都是一个固定大小的二进制掩码,表示一个通用的物体形状。

  3. 接下来,根据目标检测的结果,选择与感兴趣物体相关的概率最高的掩码系数。最终掩码是通过从目标检测输出中找到对应物体的类别概率最高的索引来完成。

  4. 选定的掩码原型被进一步处理,将其插值到输入图像的尺寸上,以生成与物体实际形状更匹配的掩码。这是通过掩码原型的二进制掩码和物体边框的大小、比例等结合,进一步调整掩码形状来完成的。

  5. 最后,经过插值处理后的掩码将与物体的边界框一起输出,作为最终的实例分割结果。这个掩码将准确地标注物体在图像中的像素级别的位置和形状。

总结起来,YOLACT 通过将掩码原型插值到输入图像的尺寸上,结合目标检测结果,计算出与物体实际形状更匹配的掩码,并输出作为最终的实例分割掩码。这个过程在 YOLACT 在像素级别准确地分割和表示图像中的不同物体。

1.2.1.1 YOLACT 的掩码原型与最终的掩码的关系

在 YOLACT 中,掩码原型和最终的掩码之间的关系说明:

  1. 掩码原型 (Mask Prototype):掩码原型是预定义的、通用的二进制掩码掩形,它们具有固定的尺寸和形状。在 YOLACT 中,掩码原型是一个由固定数量的二进制掩码组成的数组,每个掩码原型表示一种常见的物体形状。这些掩码原型可以用来构建,用于生成最终的掩码。

  2. 最终掩码(Final Mask):最终的掩码是通过选定的掩码原型进行插值和调整后得到的。根据检测的结果,AI 将选定的与感兴趣物体相匹配的掩码原型进行插值和调整。最终的掩码是通过将选定的掩码原型插值到输入图像的尺寸上,以生成与物体实际形状更匹配的掩码。这种插值过程是通过双线性插值算法来完成的。

因此,掩码原型是事先定义的、通用的物体形状模板,而最终的掩码是根据选定的掩码原型经过插值处理后生成的与物体实际形状更匹配的掩码。最终的掩码表示了对象在图像中的像素级别的位置和形状。这个过程在实例分割中,将图像中的物体与它们的掩码系数进行关联。

1.2.1.2 插值时的目标检测中提取的物体特征

在 YOLACT 中,插值过程并不直接考虑目标检测中提取的物体特征。插值过程仅关注将选定的掩码原型插值到输入图像的尺寸上,以生成与物体实际形状更匹配的掩码。

目标检测只负责提供物体的边界框坐标和类别概率,而插值阶段则是依据感兴趣的概率系数上对掩码进行形状的调整。插值过程不考虑目标检测中提取的物体特征,因为掩码原型在设计时已经包含了通用的物体形状信息。

**目标检测和插值是两个独立的步骤,它们分别处理物体的位置和形状。目标检测确定物体的边界框和类别概率,而插值阶段将掩码原型通过插值调整为物体实际的形状。**这个过程让 YOLACT 能够在图像中精确分割物体的边缘位置,而不需要直接考虑目标检测中提取的物体特征。

1.2.1.3 coefficients(系数)作用

在 YOLACT 算法中,coefficients(系数)是用于控制插值过程的参数。这些系数用于调整选定的掩码原型在插值过程中的权重和形状。

具体而言,YOLACT 使用一组系数来对选定的掩码原型组合并调整。这些系数提供了在插值和调整过程中对掩码原型进行加权的参数,使它们用于生成与目标形状相符的最终掩码。系数的权重决定了每个掩码原型的贡献,最终掩码会是这些加权后的掩码原型的线性组合,平滑和优化。

1.2.1.4 YOLACT论文中的示意图

在这里插入图片描述

在这里插入图片描述

2 环境搭建

介绍完YOLOv8后,我们来安装一下环境

2.1 软件安装

2.1.1 Visual Studio

安装Visual Studio 2022 下载Visual Studio 社区版

下载链接:https://visualstudio.microsoft.com/zh-hans/downloads/

在这里插入图片描述

注意:安装时可勾选“Python开发”和“C++开发”

2.1.2 下载和安装nvidia显卡驱动

首先要在设备管理器中查看你的显卡型号,比如在这里可以看到我的显卡型号为RTX 1060。

在这里插入图片描述

NVIDIA 驱动下载:https://www.nvidia.cn/Download/index.aspx?lang=cn 下载对应你的英伟达显卡驱动。

在这里插入图片描述

下载之后就是简单的下一步执行直到完成。 完成之后,在cmd中输入执行:

nvidia-smi

在这里插入图片描述

注:图中的 CUDA Version是当前Driver版本能支持的最高的CUDA版本

2.1.3 下载CUDA

下载CUDA CUDA用的是11.8版本

cuda下载链接:https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal

在这里插入图片描述

下载后得到文件:cuda_11.8.0_522.06_windows.exe 执行该文件进行安装。

2.1.4 安装CUDA

(1) 将cuda运行安装,建议默认路径

在这里插入图片描述

安装时可以勾选Visual Studio Integration

(2) 安装完成后设置环境变量

在这里插入图片描述

看到系统中多了CUDA_PATH和CUDA_PATH_V11_8两个环境变量。

2.1.5 下载cuDNN

cudnn下载地址:Index of /compute/cudnn/redist/cudnn/windows-x86_64 (nvidia.com)

在这里插入图片描述
在这里插入图片描述

需要有NVIDIA账号 注意:cudnn版本要和cuda版本匹配

如果NVIDIA 驱动版本低于为 520.61.05可以安装cudnn的8.9.*版本

下载得到文件cudnn-windows-x86_64-9.5.1.17_cuda11-archive.zip

2.1.6 安装cuDNN

复制cudnn文件

对于cudnn直接将其解开压缩包,然后需要将bin,include,lib中的文件复制粘贴到cuda的文件夹下

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8

注意:对整个文件夹bin,include,lib选中后进行复制粘贴
在这里插入图片描述

2.1.7 CUDA安装测试

最后测试cuda是否配置成功

打开CMD执行:

nvcc -V

在这里插入图片描述

2.1.8 安装Anaconda

Anaconda 是一个用于科学计算的 Python 发行版,支持 Linux, Mac, Windows, 包含了众多流行的科学计算、数据分析的 Python 包。

1) 下载安装包 Anaconda

下载Windows版:https://www.anaconda.com/

2) 然后安装anaconda

在这里插入图片描述

2.1.9 安装pytorch

1)创建虚拟环境

环境名字可自己确定,这里本人使用yolo8作为环境名

conda create -n yolo8 python=3.9

安装成功后激活yolo8环境:

conda activate yolo8

在所创建的yolo8环境下安装pytorch, 执行命令:

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

注意:11.8处应为自己电脑上的cuda版本号

离线安装: 下载网址: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/

安装pytorch2.0版本: pytorch-2.0.0-py3.9_cuda11.8_cudnn8_0.tar.bz

conda install --offline pytorch-2.0.0-py3.9_cuda11.8_cudnn8_0.tar.bz

2.2 YOLOv8安装

2.2.1 克隆YOLOv8并安装

安装Git软件(https://git-scm.com/downloads),克隆项目到本地(如 d:)

项目repo网址: https://github.com/ultralytics/ultralytics

在 Git CMD窗口中执行:

git clone https://github.com/ultralytics/ultralytics

在这里插入图片描述

git clone克隆需要科学上网,请自行解决

在yolo8虚拟环境下执行:

cd F:\Code\Java\JavaCode\Yolov8\ultralytics
pip install -e .

2.2.2 下载预训练权重文件

下载yolov8预训练权重文件,并放置在新建立的weights文件夹下

下载链接:https://docs.ultralytics.com/tasks/segment/

我电脑不行,参数量太大的推理太慢,我选择yolov8s-seg权重

例如:F:\Code\Java\JavaCode\Yolov8\ultralytics\ultralytics\weights

2.2.3 安装测试

预测图片:

yolo segment predict model=F:/Code/Java/JavaCode/Yolov8/ultralytics/ultralytics/weights/yolov8s-seg.pt source=F:/Code/Java/JavaCode/Yolov8/ultralytics/ultralytics/assets/bus.jpg

在这里插入图片描述

预测结果在F:\Code\Java\JavaCode\Yolov8\ultralytics\runs\segment\predict

在这里插入图片描述

预测点复杂图形

在这里插入图片描述

实时预测摄像头:

yolo segment predict predict model=F:/Code/Java/JavaCode/Yolov8/ultralytics/ultralytics/weights/yolov8s-seg.pt source=0 show

在这里插入图片描述

2.3 导出ONNX模型

2.3.1 修改模型

因为有些函数onnx并不支持,所以我们需要手动修改一下

1)修改文件1: F:\Code\Java\JavaCode\Yolov8\ultralytics\nn\modules\block.py中

class C2f(nn.Module)改动如下

在这里插入图片描述

class C2f(nn.Module):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):"""Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""super().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):"""Forward pass through C2f layer."""# y = list(self.cv1(x).chunk(2, 1))# y.extend(m(y[-1]) for m in self.m)# return self.cv2(torch.cat(y, 1))x= self.cv1(x)x =[x,x[:,self.c:, ...]]x.extend(m(x[-1]) for m in self.m)x.pop(1)return self.cv2(torch.cat(x,1))

2)修改文件2: F:\Code\Java\JavaCode\Yolov8\ultralytics\nn\modules\head.py中

class Detect(nn.Module)改动如下

在这里插入图片描述

def forward(self, x):"""Concatenates and returns predicted bounding boxes and class probabilities."""shape = x[0].shape  # BCHWfor i in range(self.nl):x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)if self.training:return xelif self.dynamic or self.shape != shape:self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))self.shape = shapereturn torch.cat([xi.view(shape[0],self.no, -1)for xi in x], 2)

注意1:旧版本的YOLOv8两个改动处都在 \ultralytics\nn\modules.py中

注意2:训练YOLOv8时不需要这两个改动

2.3.2 执行命令

yolo export model=F:/Code/Java/JavaCode/Yolov8/ultralytics/ultralytics/weights/yolov8n-seg.pt  format=onnx simplify=True opset=12
yolo export model=F:/Code/Java/JavaCode/Yolov8/ultralytics/ultralytics/weights/yolov8s-seg.pt  format=onnx simplify=True opset=12

在这里插入图片描述

在这里插入图片描述

自己训练出的权重文件导出:

yolo export model=path/to/best-seg.pt format=onnx simplify=True opset=12

2.4 onnx转换成NCNN文件

2.4.1 自动转换

一键生成:https://convertmodel-1256200149.cos-website.ap-nanjing.myqcloud.com/

打开我们刚刚生成的两个文件

在这里插入图片描述

2.4.2 手动转换

如果不想一键生成,可以自己安装

1)安装protobuf

下载protobuf-3.19.4安装包,并解压; 在VS2022的X64命令行下执行以下命令

注: 为解压的protobuf-3.19.4文件夹的根目录。

在这里插入图片描述

cd <protobuf-root-dir>
mkdir build-vs2022
cd build-vs2022cmake -G "NMake Makefiles" ^-DCMAKE_BUILD_TYPE=Release ^-DCMAKE_INSTALL_PREFIX=%cd%/install ^-Dprotobuf_BUILD_TESTS=OFF ^-Dprotobuf_MSVC_STATIC_RUNTIME=OFF ^-Dprotobuf_WITH_ZLIB=OFF ^../cmakenmake
nmake install

在这里插入图片描述

在这里插入图片描述

编译后可执行检查安装是否成功

protoc.exe --version

在这里插入图片描述

2)克隆和安装ncnn

首先克隆ncnn

git clone https://github.com/Tencent/ncnn.git

打开VS2022的X64命令行(进入到ncnn根目录下)执行以下语句

注意:cmake -G…这条命令有三个需要换成protobuf的根目录

cd <ncnn-root-dir>
mkdir -p build-vs2022
cd build-vs2022cmake -G "NMake Makefiles" ^-DCMAKE_BUILD_TYPE=Release ^-DCMAKE_INSTALL_PREFIX=%cd%/install ^-DProtobuf_INCLUDE_DIR=<protobuf-root-dir>/build-vs2022/install/include ^-DProtobuf_LIBRARIES=<protobuf-root-dir>/build-vs2022/install/lib/libprotobuf.lib ^-DProtobuf_PROTOC_EXECUTABLE=<protobuf-root-dir>/build-vs2022/install/bin/protoc.exe ^-DNCNN_VULKAN=OFF ^-DNCNN_BUILD_WITH_STATIC_CRT=ON ..nmake
nmake install

其中

cmake -G "NMake Makefiles" ^-DCMAKE_BUILD_TYPE=Release ^-DCMAKE_INSTALL_PREFIX=%cd%/install ^-DProtobuf_INCLUDE_DIR=D:/software_code/protobuf/protobuf-3.19.4/build-vs2022/install/include ^-DProtobuf_LIBRARIES=D:/software_code/protobuf/protobuf-3.19.4/build-vs2022/install/lib/libprotobuf.lib ^-DProtobuf_PROTOC_EXECUTABLE=D:/software_code/protobuf/protobuf-3.19.4/build-vs2022/install/bin/protoc.exe ^-DNCNN_VULKAN=OFF ^-DNCNN_BUILD_WITH_STATIC_CRT=ON ..

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

编译后 D:\ncnn\build-vs2022\tools\onnx下有onnx2ncnn.exe

3) 生成ncnn文件

拷贝yolov8n-seg.onnx和yolov8s-seg.onnx文件到D:\ncnn\buildvs2022\tools\onnx\

在这里插入图片描述

执行命令生成ncnn相应的param和bin文件

onnx2ncnn.exe yolov8n-seg.onnx yolov8n-seg.param yolov8n-seg.bin
onnx2ncnn.exe yolov8s-seg.onnx yolov8s-seg.param yolov8s-seg.bin

在这里插入图片描述

4)使用ncnn_optimize优化ncnn文件

产生新的param和bin文件:

ncnn\build-vs2022\tools路径下执行

先拷贝yolov8n-seg.bin和yolov8n-seg.param文件,以及yolov8s-seg.bin 和yolov8s-seg.param文件到此路径下

在这里插入图片描述

执行命令:

ncnnoptimize.exe yolov8n-seg.param yolov8n-seg.bin yolov8n-seg-opt.param yolov8n-seg-opt.bin 0
ncnnoptimize.exe yolov8s-seg.param yolov8s-seg.bin yolov8s-seg-opt.param yolov8s-seg-opt.bin 0

在这里插入图片描述

2.5 安装Android Studio

官网:https://developer.android.google.cn/studio/

安装时会提示安装SDK 同意licenses 注意:Android SDK安装路径中不要有空格

注意配置: File->Settings->Appearance & Behavior ->System Settings->Android SDK SDK Platforms

选中面向手机的Android版本

SDK Tools选中NDK, CMake

注意:cmake的版本选择不要太高

ndk版本为24.0.8215888 cmake版本为3.10.2.4988404

在这里插入图片描述

检查build.gradle(app)文件

在这里插入图片描述

在android下添加我们指定的ndk版本

ndkVersion "24.0.8215888"

添加 CMake 到文件 local.properties

在这里插入图片描述

sdk.dir=D\:\\software_code\\android\\sdk
ndk.dir=D\:\\software_code\\android\\sdk\\ndk\\24.0.8215888
cmake.dir=D\:\\software_code\\android\\sdk\\cmake\\3.10.2.4988404

然后Press the button Sync project with Gradle Files in the upper right.

在这里插入图片描述

同步Gradle成功

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/61222.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hadoop 学习心得

一、引言 &#xff08;一&#xff09;学习 Hadoop 的背景和目的 随着信息技术的飞速发展&#xff0c;数据量呈爆炸式增长&#xff0c;传统的数据处理方式已难以满足需求。在这样的背景下&#xff0c;为了能够在大数据领域有所发展&#xff0c;我开始学习 Hadoop。Hadoop 作为处…

【全面解读】Apache SeaTunnel常见问题全攻略

使用SeaTunnel需要安装Spark或者Flink这样的引擎么&#xff1f; 不需要&#xff0c;SeaTunnel 支持 Zeta、Spark 和 Flink 作为同步引擎的选择&#xff0c;您可以选择之一就行&#xff0c;社区尤其推荐使用 Zeta 这种专为同步场景打造的新一代超高性能同步引擎。Zeta 被社区用…

STM32完全学习——系统时钟设置

一、时钟框图的解读 首先我们知道STM32在上电初始化之后使用的是内部的HSI未经过分频直接通过SW供给给系统时钟&#xff0c;由于内部HSI存在较大的误差&#xff0c;因此我们在系统完成上电初始化&#xff0c;之后需要将STM32的时钟切换到外部HSE作为系统时钟&#xff0c;那么我…

分布式系统稳定性建设-性能优化篇

分布式系统稳定性建设-性能优化篇 系统稳定性建设是系统工程的核心内容之一。以下是一些重要的方面: 架构设计: 采用模块化、松耦合的架构设计,以提高系统的可扩展性和可维护性。合理划分系统功能模块,降低单个模块的复杂度。定义清晰的接口和数据交换标准,确保各模块之间协调…

网络学习第四篇

引言&#xff1a; 我们在第三篇的时候出现了错误&#xff0c;我们要就行排错&#xff0c;那么我们要知道一下怎么配置静态路由实现ping通&#xff0c;这样子我们才知道下一跳到底是什么&#xff0c;为什么这样子做。 实验目的 理解和掌握静态路由的基本概念和配置方法。 实…

[控制理论]—位置式PID与增量式PID

位置式PID与增量式PID 1.位置式PID 按模拟PID控制算法&#xff0c;以一系列的采样时刻点kT代表连续时间t&#xff0c;以矩形法数值积分近似代替积分&#xff0c;以一阶后向差分近似代替微分&#xff0c;即&#xff1a; t ≈ k T &#xff08; k 0 , 1 , 2... &#xff09; …

【c++丨STL】list的使用

&#x1f31f;&#x1f31f;作者主页&#xff1a;ephemerals__ &#x1f31f;&#x1f31f;所属专栏&#xff1a;C、STL 目录 前言 list简介 一、list的默认成员函数 构造函数(constructor) 析构函数 赋值重载 二、list的迭代器接口 迭代器的功能分类 三、list的容量…

Unity 编辑器下 Android 平台 Addressable 加载模型粉红色,类似材质丢失

Unity 编辑器下 Android 平台 Addressable 加载模型粉红色&#xff0c;类似材质丢失 Addressable Play Mode Script加载模式 选择 Use Existiing Build 1.Unity 切换到 PC 平台&#xff0c;执行 Addressable Build 运行&#xff0c;加载 bundle 内的预制体 显示正常 2.Unit…

单片机学习笔记 6. 数码管动态显示

更多单片机学习笔记&#xff1a;单片机学习笔记 1. 点亮一个LED灯单片机学习笔记 2. LED灯闪烁单片机学习笔记 3. LED灯流水灯单片机学习笔记 4. 蜂鸣器滴~滴~滴~单片机学习笔记 5. 数码管静态显示 目录 0、实现的功能 1、Keil工程 1-1 数码管动态显示 1-2 数组的定义与引用…

车企如何实现安全图纸外发管理

车企面临着日益增长的数据交换需求&#xff0c;尤其是设计图纸等敏感数据的外发管理。如何确保这些数据在传输过程中的安全性和效率&#xff0c;是车企急需解决的问题。我们将从几个关键性的因素上来分析一下怎么实现安全图纸外发管理。 统一管理与授权 采用专业的文件交换系统…

第7章 硬件测试-7.1 硬件调试

第7章 硬件测试 7.1 硬件调试7.1.1 电路检查7.1.2 电源调试7.1.3 时钟调试7.1.4 主芯片及外围小系统调试7.1.5 存储器件和串口外设调试7.1.6 其他功能模块调试 测试是每项成功产品的必经环节。硬件测试是评估产品质量的重要方法&#xff0c;产品质量是公司的信誉和品牌象征&…

Qt5/QPainter/画家

目录 1.绘制文字 1.1案例 1.2代码 2.画线 2.1案例 2.2代码 3.绘制矩形 3.1代码 4.绘制椭圆和圆 4.1椭圆 4.2圆 5.圆弧 5.1案例: 5.2代码 6.扇形 6.1案例 6.2代码: 7.更改绘画的颜色和粗细 7.1案例 ​编辑 7.2代码 1.绘制文字 1.1案例 通过三种不同的绘…

一篇保姆式centos/unbantu安装docker

前言&#xff1a; 本章节分别演示centos虚拟机&#xff0c;unbantu虚拟机进行安装docker。 上一篇介绍&#xff1a;docker一键部署springboot项目 一&#xff1a;centos 1.卸载旧版本 yum remove docker docker-client docker-client-latest docker-common docker-latest do…

fetch API和XHR

文章目录 一、基本写法1. XMLHttpRequest&#xff08;XHR&#xff09;2. Fetch API 二、兼容性1. XMLHttpRequest&#xff08;XHR&#xff09;2. Fetch API 三、Promise支持1. XMLHttpRequest&#xff08;XHR&#xff09;2. Fetch API 四、请求响应1. XMLHttpRequest&#xff0…

Photoshop(PS)——人像磨皮

1.新建一个文件&#xff0c;背景为白色&#xff0c;将图片素材放入文件中 2.利用CtrlJ 复制两个图层出来&#xff0c;选择第一个拷贝图层&#xff0c;选择滤镜---杂色---蒙尘与划痕 3.调整一下数值&#xff0c;大概能够模糊痘印痘坑&#xff0c;点击确定。 4.然后选择拷贝2图层…

Elasticsearch retrievers 通常与 Elasticsearch 8.16.0 一起正式发布!

作者&#xff1a;来自 Elastic Panagiotis Bailis Elasticsearch 检索器经过了重大改进&#xff0c;现在可供所有人使用。了解其架构和用例。 在这篇博文中&#xff0c;我们将再次深入探讨检索器&#xff08;retrievers&#xff09;。我们已经在之前的博文中讨论过它们&#xf…

《设计模式》创建型模式总结

目录 创建型模式概述 Factory Method: 唯一的类创建型模式 Abstract Factory Builder模式 Prototype模式 Singleton模式 最近在参与一个量化交易系统的项目&#xff0c;里面涉及到用java来重构部分vnpy的开源框架&#xff0c;因为是框架的搭建&#xff0c;所以会涉及到像…

c++类对象练习

#include <iostream> #include <cstring>using namespace std;class mystring {char* buf; public:mystring(); //构造函数mystring(const char* str); //构造函数void show(); //输出函数void setmystr(const mystring str); //设置函数const char* getmystr() co…

CH03_反射

第3章&#xff1a;反射 本章目标 掌握反射的原理 熟悉反射的基本运用 本章内容 反射是什么 C# 编译运行过程 首先我们在VS点击编译的时候&#xff0c;就会将C#源代码编译成程序集 程序集以可执行文件 (.exe) 或动态链接库文件 (.dll) 的形式实现 程序集中包含有Microsoft …

多品牌摄像机视频平台EasyCVR视频融合平台+应急布控球:打造城市安全监控新体系

在当今快速发展的智慧城市和数字化转型浪潮中&#xff0c;视频监控技术已成为提升公共安全、优化城市管理、增强应急响应能力的重要工具。EasyCVR视频监控平台以其强大的多协议接入能力和多样化的视频流格式分发功能&#xff0c;为用户提供了一个全面、灵活、高效的视频监控解决…