Java NIO 核心知识总结

NIO 简介
在传统的 Java I/O 模型(BIO)中,I/O 操作是以阻塞的方式进行的。也就是说,当一个线程执行一个 I/O 操作时,它会被阻塞直到操作完成。这种阻塞模型在处理多个并发连接时可能会导致性能瓶颈,因为需要为每个连接创建一个线程,而线程的创建和切换都是有开销的。

为了解决这个问题,在 Java1.4 版本引入了一种新的 I/O 模型 — NIO (New IO,也称为 Non-blocking IO) 。NIO 弥补了同步阻塞 I/O 的不足,它在标准 Java 代码中提供了非阻塞、面向缓冲、基于通道的 I/O,可以使用少量的线程来处理多个连接,大大提高了 I/O 效率和并发。

NIO 核心组件
NIO 主要包括以下三个核心组件:

Buffer(缓冲区):NIO 读写数据都是通过缓冲区进行操作的。读操作的时候将 Channel 中的数据填充到 Buffer 中,而写操作时将 Buffer 中的数据写入到 Channel 中。
Channel(通道):Channel 是一个双向的、可读可写的数据传输通道,NIO 通过 Channel 来实现数据的输入输出。通道是一个抽象的概念,它可以代表文件、套接字或者其他数据源之间的连接。
Selector(选择器):允许一个线程处理多个 Channel,基于事件驱动的 I/O 多路复用模型。所有的 Channel 都可以注册到 Selector 上,由 Selector 来分配线程来处理事件。

三者的关系如下图所示(暂时不理解没关系,后文会详细介绍):

Buffer、Channel和Selector三者之间的关系

 

Buffer(缓冲区)
在传统的 BIO 中,数据的读写是面向流的, 分为字节流和字符流。

在 Java 1.4 的 NIO 库中,所有数据都是用缓冲区处理的,这是新库和之前的 BIO 的一个重要区别,有点类似于 BIO 中的缓冲流。NIO 在读取数据时,它是直接读到缓冲区中的。在写入数据时,写入到缓冲区中。 使用 NIO 在读写数据时,都是通过缓冲区进行操作。

Buffer 的子类如下图所示。其中,最常用的是 ByteBuffer,它可以用来存储和操作字节数据。

Buffer 的子类

 

Buffer 的子类

你可以将 Buffer 理解为一个数组,IntBufferFloatBufferCharBuffer 等分别对应 int[]float[]char[] 等。

为了更清晰地认识缓冲区,我们来简单看看Buffer 类中定义的四个成员变量:

public abstract class Buffer {// Invariants: mark <= position <= limit <= capacityprivate int mark = -1;private int position = 0;private int limit;private int capacity;
}

这四个成员变量的具体含义如下:

容量(capacity):Buffer可以存储的最大数据量,Buffer创建时设置且不可改变;
界限(limit):Buffer 中可以读/写数据的边界。写模式下,limit 代表最多能写入的数据,一般等于 capacity(可以通过limit(int newLimit)方法设置);读模式下,limit 等于 Buffer 中实际写入的数据大小。
位置(position):下一个可以被读写的数据的位置(索引)。从写操作模式到读操作模式切换的时候(flip),position 都会归零,这样就可以从头开始读写了。
标记(mark):Buffer允许将位置直接定位到该标记处,这是一个可选属性;
并且,上述变量满足如下的关系:0 <= mark <= position <= limit <= capacity 。

另外,Buffer 有读模式和写模式这两种模式,分别用于从 Buffer 中读取数据或者向 Buffer 中写入数据。Buffer 被创建之后默认是写模式,调用 flip() 可以切换到读模式。如果要再次切换回写模式,可以调用 clear() 或者 compact() 方法。

position 、limit 和 capacity 之前的关系

Buffer 对象不能通过 new 调用构造方法创建对象 ,只能通过静态方法实例化 Buffer。

这里以 ByteBuffer为例进行介绍:

Buffer 最核心的两个方法:

get : 读取缓冲区的数据
put :向缓冲区写入数据
除上述两个方法之外,其他的重要方法:

flip :将缓冲区从写模式切换到读模式,它会将 limit 的值设置为当前 position 的值,将 position 的值设置为 0。
clear: 清空缓冲区,将缓冲区从读模式切换到写模式,并将 position 的值设置为 0,将 limit 的值设置为 capacity 的值。
……
Buffer 中数据变化的过程
 

import java.nio.*;public class CharBufferDemo {public static void main(String[] args) {// 分配一个容量为8的CharBufferCharBuffer buffer = CharBuffer.allocate(8);System.out.println("初始状态:");printState(buffer);// 向buffer写入3个字符buffer.put('a').put('b').put('c');System.out.println("写入3个字符后的状态:");printState(buffer);// 调用flip()方法,准备读取buffer中的数据,将 position 置 0,limit 的置 3buffer.flip();System.out.println("调用flip()方法后的状态:");printState(buffer);// 读取字符while (buffer.hasRemaining()) {System.out.print(buffer.get());}// 调用clear()方法,清空缓冲区,将 position 的值置为 0,将 limit 的值置为 capacity 的值buffer.clear();System.out.println("调用clear()方法后的状态:");printState(buffer);}// 打印buffer的capacity、limit、position、mark的位置private static void printState(CharBuffer buffer) {System.out.print("capacity: " + buffer.capacity());System.out.print(", limit: " + buffer.limit());System.out.print(", position: " + buffer.position());System.out.print(", mark 开始读取的字符: " + buffer.mark());System.out.println("\n");}
}

输出:

初始状态:
capacity: 8, limit: 8, position: 0写入3个字符后的状态:
capacity: 8, limit: 8, position: 3准备读取buffer中的数据!调用flip()方法后的状态:
capacity: 8, limit: 3, position: 0读取到的数据:abc调用clear()方法后的状态:
capacity: 8, limit: 8, position: 0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/60738.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qwen2.5-Coder-32B-Instruct Docker 部署openai接口

Qwen2.5-Coder-32B-Instruct 模型下载,国内快捷方式: conda create -n modelscope python=3.10 conda activate modelscopepip install modelscopemodelscope download --model Qwen/Qwen2.5-Coder-32B-Instruct --local_dir /ssd/xiedong/Qwen/Qwen2.5-Coder-32B-I

基于STM32的智能语音识别饮水机系统设计

功能描述 1、给饮水机设定称呼&#xff0c;喊出称呼&#xff0c;饮水机回答&#xff1a;我在 2、语音进行加热功能&#xff0c;说&#xff1a;请加热&#xff0c;加热片运行 3、饮水机水位检测&#xff0c;低于阈值播报“水量少&#xff0c;请换水” 4、检测饮水机水温&#xf…

电子应用产品设计方案-10:全自动智能门禁系统设计方案

一、系统概述 本全自动智能门禁系统旨在提供高效、安全、便捷的人员进出管理解决方案。通过融合先进的生物识别技术、传感器技术、网络通信技术和自动化控制技术&#xff0c;实现门禁的自动识别、授权、记录和管理。 二、系统组成 1. 前端识别设备 - 人脸识别模块&#xff1a;采…

聊聊Flink:Flink的分区机制

一、前言 flink任务在执行过程中&#xff0c;一个流&#xff08;stream&#xff09;包含一个或多个分区&#xff08;Stream partition&#xff09;。TaskManager中的一个slot的subtask就是一个stream partition&#xff08;流分区&#xff09;&#xff0c;一个Job的流&#xf…

IO流实用案例:用字节流--输入流(Inpustream)、输出流(OutputStream)写一个拷贝图片的案例--超简单!

案例背景&#xff1a; 我的电脑桌面有一张白敬亭的照片&#xff0c;我们需要把这张照片拷贝到我的电脑D:\学习软件\copyBJT目录下&#xff0c;当前我们这个目录是没有东西的。 代码演示以及注释&#xff1a; ublic class StreamCopy {public static void main(String[] args)…

ArkTS学习笔记:ArkTS起步

ArkTS是HarmonyOS的主力应用开发语言&#xff0c;基于TypeScript扩展&#xff0c;强化了静态检查和分析&#xff0c;旨在提升程序稳定性和性能。它采用静态类型&#xff0c;禁止运行时改变对象布局&#xff0c;并对UI开发框架能力进行扩展&#xff0c;支持声明式UI描述和自定义…

卡尔曼滤波:从理论到应用的简介

卡尔曼滤波&#xff08;Kalman Filter&#xff09;是一种递归算法&#xff0c;用于对一系列噪声观测数据进行动态系统状态估计。它广泛应用于导航、控制系统、信号处理、金融预测等多个领域。本文将介绍卡尔曼滤波的基本原理、核心公式和应用案例。 1. 什么是卡尔曼滤波&#x…

【已解决】git push一直提示输入用户名及密码、fatal: Could not read from remote repository的问题

问题描述&#xff1a; 在实操中&#xff0c;git push代码到github上一直提示输入用户名及密码&#xff0c;并且跳出的输入框输入用户名和密码后&#xff0c;报错找不到远程仓库 实际解决中&#xff0c;发现我环境有两个问题解决&#xff1a; git push一直提示输入用户名及密码…

【Rust 编程语言工具】rustup-init.exe 安装与使用指南

rustup-init.exe 是用于安装和管理 Rust 编程语言工具链的 Windows 可执行文件。Rust 是一种系统级编程语言&#xff0c;旨在提供安全、并发和高性能的功能。rustup-init.exe 是官方提供的安装器&#xff0c;用于将 Rust 安装到 Windows 操作系统中&#xff0c;并配置相关环境。…

Mac 使用mac 原生工具将mp4视频文件提取其中的 mp3 音频文件

简介 Hello! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|C++选手|学生 简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研 学习经验:扎实基础 + 多做笔…

项目中用户数据获取遇到bug

项目跟练的时候 Uncaught (in promise) TypeError: Cannot read properties of undefined (reading ‘code’) at Proxy.userInfo (user.ts:57:17) 因此我想要用result接受信息的时候会出错&#xff0c;报错显示为result.code没有该值 导致我无法获取到相应的数据 解决如下 给…

【视觉SLAM】1-概述

读书笔记 文章目录 1. 经典视觉SLAM框架2. 数学表述2.1 运动方程2.2 观测方程2.3 问题抽象 1. 经典视觉SLAM框架 传感器信息读取&#xff1a;相机图像、IMU等多源数据&#xff1b;前端视觉里程计&#xff08;Visual Odometry&#xff0c;VO&#xff09;&#xff1a;估计相机的相…

Isaac Sim+SKRL机器人并行强化学习

目录 Isaac Sim介绍 OmniIssacGymEnvs安装 SKRL安装与测试 基于UR5的机械臂Reach强化学习测评 机器人控制 OMNI GYM环境编写 SKRL运行文件 训练结果与速度对比 结果分析 运行体验与建议 Isaac Sim介绍 Isaac Sim是英伟达出的一款机器人仿真平台&#xff0c;适用于做机…

Python学习------第八天

函数 函数的传入参数 掌握函数返回值的作用 掌握函数返回值的定义语法 函数的嵌套调用&#xff1a; 函数的局部变量和全局变量 局部变量的作用&#xff1a;在函数体内部&#xff0c;临时保存数据&#xff0c;即当函数调用完成后&#xff0c;则销毁局部变量。 money 5000000 n…

机器学习基础04

目录 1.朴素贝叶斯-分类 1.1贝叶斯分类理论 1.2条件概率 1.3全概率公式 1.4贝叶斯推断 1.5朴素贝叶斯推断 1.6拉普拉斯平滑系数 1.7API 2.决策树-分类 2.1决策树 2.2基于信息增益的决策树建立 2.2.1信息熵 2.2.2信息增益 2.2.3信息增益决策树建立步骤 2.3基于基…

The Internals of PostgreSQL 翻译版 持续更新...

为了方便自己快速学习&#xff0c;整理了翻译版本&#xff0c;目前翻译的还不完善&#xff0c;后续会边学习边完善。 文档用于自己快速参考&#xff0c;会持续修正&#xff0c;能力有限,无法确保正确!!! 《The Internals of PostgreSQL 》 不是 《 PostgreSQL14 Internals 》…

Android 无签名系统 debug 版本APK push到设备引起的开机异常问题分析(zygote进程)

问题背景 前置操作&#xff1a; 替换原system/priv-app 目录下已有的应用包未未签名的debug版本&#xff0c;然后重启。 现象&#xff1a; 无法正常开机&#xff0c;卡在开机动画&#xff0c;并且pm没有起来&#xff0c;因为执行adb install 命令是返回“cmd: Cant find se…

深度学习推荐系统的工程实现

参考自《深度学习推荐系统》——王喆&#xff0c;用于学习和记录。 介绍 之前章节主要从理论和算法层面介绍了推荐系统的关键思想。但算法和模型终究只是“好酒”&#xff0c;还需要用合适的“容器”盛载才能呈现出最好的味道&#xff0c;这里的“容器”指的就是实现推荐系统…

attention 注意力机制 学习笔记-GPT2

注意力机制 这可能是比较核心的地方了。 gpt2 是一个decoder-only模型&#xff0c;也就是仅仅使用decoder层而没有encoder层。 decoder层中使用了masked-attention 来进行注意力计算。在看代码之前&#xff0c;先了解attention-forward的相关背景知识。 在普通的self-atten…

Java 内存区域详解

对于 Java 程序员来说&#xff0c;在虚拟机自动内存管理机制下&#xff0c;不再需要像 C/C程序开发程序员这样为每一个 new 操作去写对应的 delete/free 操作&#xff0c;不容易出现内存泄漏和内存溢出问题。正是因为 Java 程序员把内存控制权利交给 Java 虚拟机&#xff0c;一…