《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)

《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)

  • 《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)
    • 理解TCP和UDP
      • TCP/IP协议栈
      • TCP/IP协议的诞生背景
      • 链路层
      • 网络层
      • TCP/UDP层
      • 应用层
    • 实现基于TCP的服务端/客户端
      • 进入等待连接请求状态
      • 受理客户端连接请求
      • 回顾 Hello World 服务器端
      • TCP客户端的默认函数调用顺序
      • 客户端套接字地址信息
      • 回顾 Hello World 客户端
      • 基于TCP的服务器端/客户端函数调用关系
    • 实现迭代服务器端/客户端
      • 实现迭代服务器端
      • 迭代回声服务器端/客户端
        • echo_server.c
        • echo_client.c
      • 回声客户端存在的问题
    • 基于 Windows 的实现
      • 与 Linux 的区别
      • 基于 Windows 的回声服务器端
      • 基于 Windows 的回声客户端
      • 测试
    • 习题
      • (1)请说明TCP/IP的4层协议栈,并说明TCP和UDP套接字经过的层级结构差异。
      • (2)请说出TCP/IP协议栈中链路层和IP层的作用,并给出两者关系。
      • (3)为何需要把TCP/IP协议栈分成4层(或7层)?结合开放式系统回答
      • (4)客户端调用connect函数向服务器端发送连接请求。服务器端调用哪个函数后,客户端可以调用connect函数?
      • (5)什么时候创建连接请求等待队列?它有何作用?与accept有什么关系?
      • (6)客户端中为何不需要调用bind函数分配地址?如果不调用bind函数,那何时、如何向套接字分配IP地址和端口号?
      • 把第1章的hello_server.c和hello_server_win.c改成迭代服务器端,并利用客户端测试更改是否准确。

《TCP/IP网络编程》学习笔记 | Chapter 4:基于TCP的服务器端/客户端(1)

理解TCP和UDP

根据数据传输方式的不同,基于网络协议的套接字一般分为TCP套接字和UDP套接字。因为TCP套接字是面向连接的,因此又称为基于流(stream)的套接字。

TCP是Transmission Control Protocol(传输控制协议)的简写,意为“对数据传输过程的控制”。因此,学习控制方法及范围有助于正确理解TCP套接字。

TCP/IP协议栈

讲解TCP前先介绍TCP所属的TCP/IP协议栈(Stack,层),如图所示:

在这里插入图片描述

从上图可以看出,TCP/IP协议栈共分为四层,可以理解为数据收发分成了四个层次化过程。也就是说,面对“基于互联网的有效数据传输”的命题,并非通过一个庞大的协议解决问题,而是通过层次化方案——TCP/IP协议栈解决,通过TCP套接字收发数据需要借助四层,如图所示:

在这里插入图片描述

反之,通过UDP套接字收发数据时,利用下图的四层协议栈来完成:

在这里插入图片描述

各层可能通过操作系统等软件实现,也可能通过类似NIC的硬件设备实现。

TCP/IP协议的诞生背景

把“通过因特网完成有效数据传输”问题按照不同领域划分成小问题后,出现了多种协议,它们通过层级结构建立紧密联系。

把协议分成多个层次具有的优点:

  1. 协议设计更容易
  2. 为了通过标准化操作设计开放式系统

以多个标准为依据所设计的系统称为开放式系统,我们现在学习的TCP/IP协议栈也属于其中之一。那么开放式系统具有哪些优点呢?比方:路由器用来完成IP层交互任务,某公司原先使用A路由器,可将其替换成B路由器,即便A、B这两种路由器并非同一产商也可以顺利替换,因为所有的路由器生产产商都会按照IP层标准制造。再举个例子,大家的计算机一般都装有网卡(网络接口卡),即便没安装也没关系,网卡很容易买到,因为所有的网卡制造商都会遵守链路层的协议标准,这就是开放式系统的优点。

链路层

链路层是物理链接领域标准化的结果,也是最基本的领域,专门定义LAN、WAN、MAN等网络标准。若两台主机通过网络进行数据进行交换,则需要下图所示的物理连接,链路层就负责这些标准。

在这里插入图片描述

网络层

准备好物理连接后就要传输数据,为了在复杂的网络中传输数据,首先需要考虑路径的选择。向目标传输数据需要经过哪条路径?解决此问题就是IP层,该层使用的协议就是IP。IP本身是面向消息的、不可靠的协议。每次传输数据时会帮我们选择路径,但每次传输时的路径并不一致。如果传输中发生路径错误,则选择其他路径;但如果发生数据丢失或损坏,则无法解决。换言之,IP协议无法应对数据错误。

TCP/UDP层

IP层解决数据传输中的路径选择问题,只需照此路径传输数据即可。TCP和UDP层以IP层提供的路径信息为基础完成实际的数据传输,故该层又称传输层。UDP比TCP简单,我们后面还会在讨论,现在只解释TCP。TCP可以保证可靠的数据传输,但它发送数据时以IP层为基础,IP层是面向消息的,是不可靠的,那TCP又是如何保证消息的可靠传输呢?

IP层只关注一个数据包(数据传输的基本单位)的传输过程。因此,即使传输多个数据包,每个数据包也是由IP层实际传输的,也就是说传输顺序及传输本身都是不可靠的。若只利用IP层传输数据,则有可能后发送的数据包比早发生的数据包先到达目标主机。另外,传输的数据包A、B、C中可能只收到A和C,B可能丢失或接收到时已损坏。但若添加TCP协议则会按照如下图的方式进行数据传输:

在这里插入图片描述

我们可以看到,当主机A发送1号数据包给主机B时,必须等到主机B确认1号数据包接收成功,才会接着发送2号数据包,如果主机A发送1号数据包却迟迟收不到主机B回复的接收成功,则会认为是超时,并重新发送一个1号数据包。

应用层

数据传输路径、数据确认过程都被隐藏到套接字内部,只需利用套接字编出程序即可。编写软件过程中,需要根据程序特点决定服务器端和客户端之间的数据传输规定,这便是应用层协议。

网络编程的大部分内容就是设计并实现应用层协议。

实现基于TCP的服务端/客户端

下图给出了TCP服务器端默认的函数调用顺序,大部分TCP服务器端都按照该顺序调用。

在这里插入图片描述

调用socket函数创建套接字,声明并初始化地址信息结构体变量,调用bind函数向套接字分配地址。这两个阶段之前都讨论过了,下面讲解之后的几个过程。

进入等待连接请求状态

我们已调用bind函数给套接字分配了地址,接下来就要通过调用listen函数进入等待连接请求状态。只有调用了listen函数,服务端套接字才能进入可接收连接的状态,换言之,这时,客户端才能调用connect函数(若提前调用则会发生错误)。

#include <sys/socket.h>int listen(int sockfd, int backlog);

成功时返回0,失败时返回-1。

参数:

  • sock:希望进入等待连接请求状态的套接字文件描述符,传递的描述符套接字参数成为服务端套接字(监听套接字)
  • backlog:连接请求等待队列(Queue)的长度,若为5,则队列长度为5,表示最多使5个连接请求进入队列

“服务器端处于等待连接请求状态”是指,客户端请求连接时,服务器端受理连接前一直处于等待状态,当有多个客户端一起发送连接请求时,服务器端套接字只能处理一个连接请求,而其他的连接请求,只能暂时放在请求队列。

在这里插入图片描述

客户端如果向服务器端询问:“请问我是否可以发起连接?”服务器端套接字就会亲切应答:“您好!当然可以,但系统正忙,请到等候室排号等待,准备好后会立即受理您的连接。”同时将连接请求请到等候室。调用listen函数即可生成这种门卫(服务器端套接字),listen函数的第二个参数决定了等候室的大小。等候室称为连接请求等待队列,准备好服务器端套接字和连接请求等待队列后,这种可接收连接请求的状态称为等待连接请求状态。

受理客户端连接请求

调用listen函数后,若有新的连接请求,则应按序受理。受理请求意味着进入可接收数据的状态,这里进入这种状态的所需部件当然还是套接字,可能有人会想使用服务器端套接字,但服务器端套接字已经用于监听,如果将其用于与客户端交换数据,那么谁来监听客户端的连接请求呢?因此需要另外一个套接字,但没必要亲自创建,accept函数将自动创建套接字,并连接到发起请求的客户端。

#include <sys/socket.h>int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

成功时返回创建的套接字文件描述符,失败时返回-1。

参数:

  • sock:服务器套接字的文件描述符
  • addr:保存发起连接请求的客户端地址信息的变量地址值,调用函数后向传递来的地址变量参数填充客户端地址信息
  • addrlen:第二个参数addr结构体的长度,但是存有长度的变量地址。函数调用完成后,该变量即被填入客户端地址长度

accept函数受理连接请求等待队列中待处理的客户端连接请求,函数调用成功时,accept函数内部将产生用于数据I/O的套接字,并返回其文件描述符。需要强调的是,套接字是自动创建的,并自动与发起连接请求的客户端建立连接。

在这里插入图片描述

回顾 Hello World 服务器端

这里,我们重新回顾第一章的hello_server.c。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>void error_handling(char *message);int main(int argc, char *argv[])
{int serv_sock;int clnt_sock;struct sockaddr_in serv_addr;struct sockaddr_in clnt_addr;socklen_t clnt_addr_size;char message[] = "Hello world!";if (argc != 2){printf("Usage: %s <port>\n", argv[0]);exit(1);}serv_sock = socket(AF_INET, SOCK_STREAM, 0);if (serv_sock == -1)error_handling("sock() error");memset(&serv_addr, 0, sizeof(serv_addr));serv_addr.sin_family = AF_INET;serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);serv_addr.sin_port = htons(atoi(argv[1]));if (bind(serv_sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)error_handling("bind() error");if (listen(serv_sock, 5) == -1)error_handling("listen() error");clnt_addr_size = sizeof(clnt_addr);clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_addr, &clnt_addr_size);if (clnt_sock == -1)error_handling("accept() error");write(clnt_sock, message, sizeof(message));close(clnt_sock);close(serv_sock);return 0;
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}

第27行:服务器端实现过程中先要创建套接字,但此时的套接字尚未是真正的服务器端套接字

第31~37行:为了完成套接字地址分配,初始化结构体变量并调用bind函数

第39行:调用accept函数从队列的顶部取出一个连接请求与客户端建立连接,并返回创建的套接字文件描述符。另外,调用accept函数时若等待队列为空,则accept函数不会返回,直到队列中出现新的客户端连接

第47~49行:调用write函数向客户端传输数据,调用close函数关闭连接

TCP客户端的默认函数调用顺序

创建套接字和请求连接就是客户端的全部内容。

在这里插入图片描述

与服务器端相比,区别就在于“请求连接”,它是创建客户端套接字后向服务器端发起的连接请求。服务器端调用listen函数后创建连接请求等待队列,之后客户端即可请求连接。那如何发起连接请求呢?通过connect函数完成:

#include <sys/socket.h>int connect(int sock_fd, struct sockaddr *serv_addr, socklen_t addrlen);

成功时返回0,失败时返回-1。

参数:

  • sock_fd:客户端套接字文件描述符
  • serv_addr:保存目标服务器端地址信息的变量地址值
  • addrlen:以字节为单位传递已传递给第二个结构体参数serv_addr的地址变量长度

客户端调用connect函数后,发生以下情况之一才会返回(完成函数调用):

  • 服务器端接收连接请求
  • 发生断网等异常情况而中断连接请求

需要注意,所谓的“接收连接”并不意味着服务器端调用accept函数,其实是服务器端把连接请求信息记录到等待队列,因此connect函数返回后并不立即进行数据交换。

客户端套接字地址信息

实现服务端必须给套接字分配IP地址和端口号,但客户端实现过程未出现,而是创建套接字后立即调用connect函数。网络数据交换必须分配IP和端口号,这是怎么回事呢?

客户端分配地址:

何时:调用connect函数时
何地:操作系统的内核中
如何:IP用计算机(主机)的IP,端口随机

客户端的IP地址和端口在调用connect函数时自动分配,无需调用标记的bind函数进行分配。

回顾 Hello World 客户端

这里,我们再回顾之前的hello_client.c。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>void error_handling(char *message);int main(int argc, char *argv[])
{int sock;struct sockaddr_in serv_addr;char message[30];int str_len;if (argc != 3){printf("Usage: %s <IP> <port>\n", argv[0]);exit(1);}sock = socket(AF_INET, SOCK_STREAM, 0);if (sock == -1)error_handling("sock() error");memset(&serv_addr, 0, sizeof(serv_addr));serv_addr.sin_family = AF_INET;serv_addr.sin_addr.s_addr = inet_addr(argv[1]);serv_addr.sin_port = htons(atoi(argv[2]));if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)error_handling("connect() error!");str_len = read(sock, message, sizeof(message) - 1);if (str_len == -1)error_handling("read() error!");printf("Message from server: %s\n", message);close(sock);return 0;
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}

第23行:创建准备连接服务器端的套接字,此时创建的是TCP套接字

第27~30行:结构体变量serv_addr中初始化IP和端口信息。初始化值为目标服务器端套接字的IP和端口信息

第32行:调用connect函数向服务器端发送连接请求

第35行:完成连接后,接收服务器端传输的数据

第40行:接收数据后调用close函数关闭套接字,结束与服务器端的连接

基于TCP的服务器端/客户端函数调用关系

前面讲解了TCP服务器端/客户端的实现顺序,实际上二者并非相互独立,让我们画一下它们之间的交互过程。

在这里插入图片描述

服务器端创建套接字后连续调用bind、listen函数进入等待状态,客户端通过调用connect函数发起连接请求,需要注意的是,客户端只能等到服务器端调用listen函数后才能调用connect函数。同时要清楚,客户端调用connect前,服务器端可能先调用了accept函数。当然,此时服务器端在调用accept函数时进入了阻塞状态,直到客户端调用connect函数为止。

实现迭代服务器端/客户端

回声服务器端/客户端:服务器端将客户端传输的字符串数据原封不动地传回客户端。

实现迭代服务器端

何为迭代服务器端?

设置好等待队列后,应向所有客户端提供服务,在受理完一个客户端请求连接后,还需要再受理其他的请求连接。

迭代服务器端的函数调用顺序:

在这里插入图片描述

从上图看出,调用accept函数后,紧接着调用I/O相关的read、write函数,然后调用close函数。这并非针对服务器端套接字,而是针对accept函数调用时所创建的套接字。

调用close函数就意味着结束了针对某一客户端的服务,此时如果还想服务于其他客户端,就要重新调用accept函数。

目前,我们的服务器端套接字同一时刻只能服务于一个客户端连接,将来学完进程和线程后,就可以编写同时服务多个客户端的服务器端了。

迭代回声服务器端/客户端

接下来创建迭代回声服务器端及与之配套的回声客户端,首先整理一下程序的基本运行方式:

  • 服务器端在同一时刻只与一个客户端相连,并提供回声服务
  • 服务器端依次向五个客户端提供服务并退出
  • 客户端接收用户输入的字符串并发送到服务器端
  • 服务器端将接收到的字符串回传给客户端,即“回声”
  • 服务器端与客户端之间的字符串回声一直执行到客户端输入Q为止
echo_server.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>#define BUF_SIZE 1024
void error_handling(char *message);int main(int argc, char *argv[])
{int serv_sock, clnt_sock;char message[1024];int str_len, i;struct sockaddr_in serv_adr, clnt_adr;socklen_t clnt_adr_sz;if (argc != 2){printf("Usage: %s <port>\n", argv[0]);exit(1);}serv_sock = socket(PF_INET, SOCK_STREAM, 0);if (serv_sock == -1)error_handling("socket() error");memset(&serv_adr, 0, sizeof(serv_adr));serv_adr.sin_family = AF_INET;serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);serv_adr.sin_port = htons(atoi(argv[1]));if (bind(serv_sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1)error_handling("bind() error");if (listen(serv_sock, 5) == -1)error_handling("listen() error");clnt_adr_sz = sizeof(clnt_adr);for (i = 0; i < 5; i++){clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_adr, &clnt_adr_sz);if (clnt_sock == -1)error_handling("accept() error");elseprintf("Connected client %d \n", i + 1);while ((str_len = read(clnt_sock, message, BUF_SIZE)) != 0)write(clnt_sock, message, str_len);close(clnt_sock);}close(serv_sock);return 0;
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}

第37~47行:为处理5个客户端连接而添加的循环语句。共调用五次accept函数,依次向五个客户端提供服务

第44、45行:实际完后回声服务的代码,原封不动地传输读取的字符串

第46行:针对连接客户端的套接字调用close函数,向连接的相应套接字发送EOF。换言之,客户端套接字若调用close函数,则第44行的循环条件变为false,因此执行第46行代码

第48行:向5个客户端提供服务后关闭服务器端套接字并终止程序

echo_client.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>#define BUF_SIZE 1024
void error_handling(char *message);int main(int argc, char *argv[])
{int sock;char message[1024];int str_len;struct sockaddr_in serv_adr;if (argc != 3){printf("Usage: %s <IP> <port>\n", argv[0]);exit(1);}sock = socket(PF_INET, SOCK_STREAM, 0);if (sock == -1)error_handling("socket() error");memset(&serv_adr, 0, sizeof(serv_adr));serv_adr.sin_family = AF_INET;serv_adr.sin_addr.s_addr = inet_addr(argv[1]);serv_adr.sin_port = htons(atoi(argv[2]));if (connect(sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1)error_handling("connect() error");elseputs("Connected..........");while (1){fputs("Input message(Q to quit):", stdout);fgets(message, BUF_SIZE, stdin);if (!strcmp(message, "q\n") || !strcmp(message, "Q\n"))break;write(sock, message, strlen(message));str_len = read(sock, message, BUF_SIZE - 1);message[str_len] = 0;printf("Message from server: %s", message);}close(sock);return 0;
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}

第29行:调用connect函数。若调用该函数引起的连接请求被注册到服务器端等待队列,则connect函数将完成正常调用。因此,即使通过第30行代码输出了连接提示字符串,如果服务器尚未调用accept函数,也不会真正建立服务关系

第44行:调用close函数向相应套接字发送EOF(EOF即意味着中断连接)

回声客户端存在的问题

下面是echo_client.c的代码:

        write(sock, message, strlen(message));str_len = read(sock, message, BUF_SIZE - 1);message[str_len] = 0;printf("Message from server: %s", message);

以上的代码有个错误假设:每次调用read、write函数时都会以字符串为单位执行实际的I/O操作。但是别忘了,TCP不存在数据边界。因此,多次调用write函数传递字符串有可能一次性传递到服务端,此时,客户端有可能从服务端收到多个字符串,这不是我们希望看到的结果

还要考虑另外一种情况:字符串太长,需要分两次数据包发送,客户端有可能在尚未收到全部数据包时就调用read函数。这些都是TCP特性的问题,我们将在下一章给出解决的办法。

朴素的解决方法:可以提前确定接收数据的大小。若之前传输了20字节长的字符串,则在接收时循环调用read函数读取20个字节。

基于 Windows 的实现

与 Linux 的区别

  • 通过 WSAStartup、WSACleanup 函数初始化并清除套接字相关库。
  • 数据类型和变量名切换为 Windows 风格。
  • 数据传输用 recv、send 函数而非 read、write 函数。
  • 关闭套接字时用 closesocket 函数而非 close 函数。

基于 Windows 的回声服务器端

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <winsock2.h>#define BUF_SIZE 1024void ErrorHanding(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}int main(int argc, char *argv[])
{WSADATA wsaData;SOCKET hServerSock, hClientSock;SOCKADDR_IN serverAddr, clientAddr;int clientAddrSize;char message[BUF_SIZE];int strLen;if (argc != 2){printf("Usage: %s <port>\n", argv[0]);exit(1);}if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)ErrorHanding("WSAStartup() error!");hServerSock = socket(PF_INET, SOCK_STREAM, 0);if (hServerSock == INVALID_SOCKET)ErrorHanding("socket() error!");memset(&serverAddr, 0, sizeof(serverAddr));serverAddr.sin_family = AF_INET;serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);serverAddr.sin_port = htons(atoi(argv[1]));if (bind(hServerSock, (SOCKADDR *)&serverAddr, sizeof(serverAddr)) == SOCKET_ERROR)ErrorHanding("bind() error!");if (listen(hServerSock, 5) == SOCKET_ERROR)ErrorHanding("listen() error!");clientAddrSize = sizeof(clientAddr);for (int i = 0; i < 5; i++){hClientSock = accept(hServerSock, (SOCKADDR *)&clientAddr, &clientAddrSize);if (hClientSock == INVALID_SOCKET)ErrorHanding("accept() error!");elseprintf("Connected client %d\n", i + 1);// echowhile ((strLen = recv(hClientSock, message, BUF_SIZE, 0)) != 0)send(hClientSock, message, strLen, 0);closesocket(hClientSock);}closesocket(hServerSock);WSACleanup();return 0;
}

基于 Windows 的回声客户端

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <winsock2.h>#define BUF_SIZE 1024void ErrorHanding(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}int main(int argc, char *argv[])
{WSADATA wsaData;SOCKET hSocket;SOCKADDR_IN serverAddr;char message[BUF_SIZE];int strLen;if (argc != 3){printf("Usage: %s <IP> <port>\n", argv[0]);exit(1);}if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)ErrorHanding("WSAStartup() error!");hSocket = socket(PF_INET, SOCK_STREAM, 0);if (hSocket == INVALID_SOCKET)ErrorHanding("hSocket() error!");memset(&serverAddr, 0, sizeof(serverAddr));serverAddr.sin_family = AF_INET;serverAddr.sin_addr.s_addr = inet_addr(argv[1]);serverAddr.sin_port = htons(atoi(argv[2]));if (connect(hSocket, (SOCKADDR *)&serverAddr, sizeof(serverAddr)) == SOCKET_ERROR)ErrorHanding("connect() error!");elseputs("Connected......");while (1){fputs("Input message(Q to quit): ", stdout);fgets(message, BUF_SIZE, stdin);if (!strcmp(message, "q\n") || !strcmp(message, "Q\n"))break;send(hSocket, message, strlen(message), 0);strLen = recv(hSocket, message, BUF_SIZE - 1, 0);message[strLen] = '\0';printf("Message from server: %s\n", message);}closesocket(hSocket);WSACleanup();return 0;
}

测试

编译:

gcc echo_server_win.c -lwsock32 -o echo_server
gcc echo_client_win.c -lwsock32 -o echo_client

运行结果:

// 服务器端
C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>echo_server 9190
Connected client 1
Connected client 2
Connected client 3
Connected client 4
Connected client 5// 客户端
C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>echo_client 127.0.0.1 9190
Input message(Q to quit): www
Message from server: wwwInput message(Q to quit): never gonna
Message from server: never gonnaInput message(Q to quit): www
Message from server: www

习题

(1)请说明TCP/IP的4层协议栈,并说明TCP和UDP套接字经过的层级结构差异。

从高到低:应用层、传输层、网络层、数据链路层

  • TCP:链路层->IP层->TCP层->应用层
  • UDP:链路层->IP层->UDP层->应用层

(2)请说出TCP/IP协议栈中链路层和IP层的作用,并给出两者关系。

数据链路层通过各种控制协议,将有差错的物理信道变为无差错的、能可靠传输数据帧的数据链路。

网络层通过路由选择算法,为分组选择最适当的路径,实现两个端系统之间的数据透明传送。

数据链路层作为 IP 层的直接下层,向上提供数据传送服务。

(3)为何需要把TCP/IP协议栈分成4层(或7层)?结合开放式系统回答

开放式系统的研制经验表明,对于复杂的计算机网络协议,其结构应该是层次式的。

分层的好处:隔层之间是独立的,灵活性好,结构上可以分隔开,易于实现和维护,能促进标准化工作。

(4)客户端调用connect函数向服务器端发送连接请求。服务器端调用哪个函数后,客户端可以调用connect函数?

调用listen函数,设置好服务端监听套接字后。

(5)什么时候创建连接请求等待队列?它有何作用?与accept有什么关系?

调用listen函数时创建了连接请求等待队列。它是存储客户端连接请求信息的空间。accept函数调用后,将从连接请求队列中取出连接请求信息,并与相应客户端建立连接。

(6)客户端中为何不需要调用bind函数分配地址?如果不调用bind函数,那何时、如何向套接字分配IP地址和端口号?

客户端是请求连接的程序,不是一个接收连接的程序。所以,服务器的地址信息是更重要的因素,没有必要通过bind函数明确地分配地址信息。但是,要想和服务器通信,必须将自己的地址信息分配到套接字上,因此,在connect函数调用时,自动把IP地址和端口号输入到套接字上(IP用计算机(主机)的IP,端口随机)。

把第1章的hello_server.c和hello_server_win.c改成迭代服务器端,并利用客户端测试更改是否准确。

hello_echo_server.c:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>void error_handling(char *message);int main(int argc, char *argv[])
{int serv_sock;int clnt_sock;struct sockaddr_in serv_addr;struct sockaddr_in clnt_addr;socklen_t clnt_addr_size;char message[] = "Hello World!";if (argc != 2){printf("Usage : %s <port>\n", argv[0]);exit(1);}serv_sock = socket(PF_INET, SOCK_STREAM, 0);if (serv_sock == -1)error_handling("socket() error");memset(&serv_addr, 0, sizeof(serv_addr));serv_addr.sin_family = AF_INET;serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);serv_addr.sin_port = htons(atoi(argv[1]));if (bind(serv_sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)error_handling("bind() error");if (listen(serv_sock, 5) == -1)error_handling("listen() error");clnt_addr_size = sizeof(clnt_addr);while (1){clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_addr, &clnt_addr_size);if (clnt_sock == -1)break;write(clnt_sock, message, sizeof(message));close(clnt_sock);}close(serv_sock);return 0;
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}

hello_echo_server_win.c:

#include <stdio.h>
#include <stdlib.h>
#include <winsock2.h>void ErrorHanding(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}int main(int argc, char *argv[])
{WSADATA wsaData;SOCKET hServerSock, hClientSock;SOCKADDR_IN serverAddr, clientAddr;int szClientAddr;char message[] = "Hello World!";if (argc != 2){printf("Usage: %s <port>\n", argv[0]);exit(1);}if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)ErrorHanding("WSAStartup() 	error!");hServerSock = socket(PF_INET, SOCK_STREAM, 0);if (hServerSock == INVALID_SOCKET)ErrorHanding("socket() 	error!");memset(&serverAddr, 0, sizeof(serverAddr));serverAddr.sin_family = AF_INET;serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);serverAddr.sin_port = htons(atoi(argv[1]));if (bind(hServerSock, (SOCKADDR *)&serverAddr, sizeof(serverAddr)) == SOCKET_ERROR)ErrorHanding("bind() error!");if (listen(hServerSock, 5) == SOCKET_ERROR)ErrorHanding("listen() error!");szClientAddr = sizeof(clientAddr);while (1){hClientSock = accept(hServerSock, (SOCKADDR *)&clientAddr, &szClientAddr);if (hClientSock == INVALID_SOCKET){ErrorHanding("accept() error!");break;}send(hClientSock, message, sizeof(message), 0);closesocket(hClientSock);}closesocket(hServerSock);WSACleanup();return 0;
}

编译:

gcc hello_client_win.c -lwsock32 -o hClntWin
gcc hello_echo_server_win.c -lwsock32 -o hEchoServWin

测试:

// 服务器端
C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>hEchoServWin 9190// 客户端
C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>hClntWin 127.0.0.1 9190
Message from server: Hello World!C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>hClntWin 127.0.0.1 9190
Message from server: Hello World!C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>hClntWin 127.0.0.1 9190
Message from server: Hello World!C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>hClntWin 127.0.0.1 9190
Message from server: Hello World!C:\Users\81228\Documents\Program\TCP IP Project\Chapter 4>

结果正确,符合预期。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/60123.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【基于PSINS工具箱】以速度为观测量的SINS/GNSS组合导航,UKF滤波

基于【PSINS工具箱】&#xff0c;提供一个MATLAB例程&#xff0c;仅以速度为观测量的SINS/GNSS组合导航&#xff08;滤波方式为UKF&#xff09; 文章目录 工具箱程序简述运行结果 代码程序讲解MATLAB 代码教程&#xff1a;使用UKF进行速度观测1. 引言与基本设置2. 初始设置3. U…

【Vue】Vue3.0(十七)Vue 3.0中Pinia的深度使用指南(基于setup语法糖)

上篇文章&#xff1a; 【Vue】Vue3.0&#xff08;十一&#xff09;Vue 3.0 中 computed 计算属性概念、使用及示例 &#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f916;Vue专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年11月10日15点23分 文章…

跨境云专线:构建高速、安全的全球业务网络

在企业出海加速的背景下&#xff0c;越来越多的企业需要在全球范围内部署业务&#xff0c;特别是在多个国家和地区之间进行数据传输。然而&#xff0c;跨境网络连接常常面临带宽不足、延迟高、数据安全性差等问题&#xff0c;这给企业的业务运营带来了巨大挑战。为了解决这些问…

分布式——BASE理论

简单来说&#xff1a; BASE&#xff08;Basically Available、Soft state、Eventual consistency&#xff09;是基于CAP理论逐步演化而来的&#xff0c;核心思想是即便不能达到强一致性&#xff08;Strong consistency&#xff09;&#xff0c;也可以根据应用特点采用适当的方…

UE5.4 PCG 获取地形Layer

使用AttributeFilter&#xff1a;属性过滤器 节点 设置地形Layer名称和权重 效果&#xff1a;

使用wordpress搭建简易的信息查询系统

背景 当前有这样的一个需求&#xff0c;要实现让客户能够自助登录系统查询一些个人的信息&#xff0c;市面上没有特别符合我的需求的产品&#xff0c;经过一段时间的研究&#xff0c;想出了一个用wordpress实现简易信息查询系统&#xff0c;有两种方式。 方式一&#xff1a;使…

EasyUI弹出框行编辑,通过下拉框实现内容联动

EasyUI弹出框行编辑&#xff0c;通过下拉框实现内容联动 需求 实现用户支付方式配置&#xff0c;当弹出框加载出来的时候&#xff0c;显示用户现有的支付方式&#xff0c;datagrid的第一列为conbobox,下来选择之后实现后面的数据直接填充&#xff1b; 点击新增&#xff1a;新…

ssm079基于SSM框架云趣科技客户管理系统+jsp(论文+源码)_kaic

毕 业 设 计&#xff08;论 文&#xff09; 题目&#xff1a;客户管理系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本客户管理系统就是在这…

PICO+Unity 用手柄点击UI界面

如果UI要跟随头显&#xff0c;可将Canvas放置到XR Origin->Camera Offset->Main Camera下 1.Canvas添加TrackedDeviceGraphicRaycaster组件 2.EventSystem移动默认的Standard Input Module&#xff0c;添加XRUIInputModule组件 3.&#xff08;可选&#xff09;设置射线可…

apt镜像源制作-ubuntu22.04

# 安装必要的软件 sudo apt-get install -y apt-mirror # 编辑/etc/apt/mirror.list,添加以下内容 set base_path /var/spool/apt-mirror # 指定要镜像的Ubuntu发布和组件-null dir jammy-updates main restricted universe multiverse # 镜像的Ubuntu发布和组件的URL-n…

springboot初体验

目录 环境 controller 修改端口号 更改banner图标 运行结果 最核心的:自动装配 环境 jdk17springboot3.3.5maven3.8.2 controller controller层和启动类同级 package com.example.demo.controller; ​ import org.springframework.web.bind.annotation.RequestMapping;…

Q:警告无法解释导入PIL Pylance(reportMisssingIMports)

问题显示&#xff1a; 解决方法&#xff1a; 1.确认安装 Pillow&#xff1a;在 VS Code 的终端中运行以下命令&#xff0c;以确保环境中安装了 Pillow pip install pillow2.选择正确的解释器&#xff1a;在 VS Code 中&#xff0c;按下 CtrlShiftP&#xff0c;输入并选择 “P…

python中常见的8种数据结构之一数组的应用

在Python中&#xff0c;数组是一种常见的数据结构&#xff0c;用于存储一系列相同类型的元素。在实际应用中&#xff0c;数组可以用于解决各种问题。 以下是数组在Python中的一些常见应用&#xff1a; 1. 存储和访问数据&#xff1a;数组可以用于存储和访问一组数据。可以通过…

网络安全——下载并在kali虚拟机上启动Cobalt Strike

目录 一、下载 二、上传文件到kali虚拟机 三、启动服务端 四、启动客户端 一、下载 CobaltStrike4.8汉化版带插件-CSDN博客 下载并解压后 二、上传文件到kali虚拟机 1、打开并运行kali虚拟机&#xff0c;查看kali的ip地址 2、打开xshell&#xff0c;新建连接&#xff0c;连…

用 Python 从零开始创建神经网络(四):激活函数(Activation Functions)

激活函数&#xff08;Activation Functions&#xff09; 引言1. 激活函数的种类a. 阶跃激活功能b. 线性激活函数c. Sigmoid激活函数d. ReLU 激活函数e. more 2. 为什么使用激活函数3. 隐藏层的线性激活4. 一对神经元的 ReLU 激活5. 在隐蔽层中激活 ReLU6. ReLU 激活函数代码7. …

22.oop-strust与class

OOP是什么&#xff1a;oop 是面向对象编程,面向对象编程是一种计算机编程架构, OOP 的一条基本原则是计算机程序是由单个能够起到子程序作用的单元或 对象组、合而成。 OOP有什么特性&#xff1a; 1、封装性&#xff1a;也称为信息隐藏&#xff0c;就是将一个类的使用和实现分开…

【Linux】ubuntu安装图形化界面步骤

一、ubuntu 安装桌面环境 1、更新软件包列表&#xff08;命令↓&#xff09; sudo apt update 2、安装桌面环境GNOME&#xff08;命令↓&#xff09; sudo apt install ubuntu-desktop 3、安装完成后需要重启服务器&#xff08;服务器重启命令↓&#xff09; sudo reboot 二、…

【Android】轮播图——Banner

引言 Banner轮播图是一种在网页和移动应用界面设计中常见的元素&#xff0c;主要用于在一个固定的区域内自动或手动切换一系列图片&#xff0c;以展示不同的内容或信息。这个控件在软件当中经常看到&#xff0c;商品促销、热门歌单、头像新闻等等。它不同于ViewPgaer在于无需手…

Vue2 doc、excel、pdf、ppt、txt、图片以及视频等在线预览

Vue2 doc、excel、pdf、ppt、txt、图片等在线预览 安装使用目录结构直接上代码src\components\FileView\doc\index.vuesrc\components\FileView\excel\index.vuesrc\components\FileView\img\index.vuesrc\components\FileView\pdf\index.vuesrc\components\FileView\ppt\index…

[OpenGL]使用OpenGL实现硬阴影效果

一、简介 本文介绍了如何使用OpenGL实现硬阴影效果&#xff0c;并在最后给出了全部的代码。本文基于[OpenGL]渲染Shadow Map&#xff0c;实现硬阴影的流程如下&#xff1a; 首先&#xff0c;以光源为视角&#xff0c;渲染场景的深度图&#xff0c;将light space中的深度图存储…