初始JavaEE篇——多线程(4):生产者-消费者模型、阻塞队列

在这里插入图片描述

找往期文章包括但不限于本期文章中不懂的知识点:

个人主页:我要学编程程(ಥ_ಥ)-CSDN博客

所属专栏:JavaEE

文章目录

  • 阻塞队列
  • 生产者—消费者模型
    • 生产者—消费者模型的优势:
    • 生产者—消费者模型的劣势:
  • Java标准库中的阻塞队列:
  • 模拟实现阻塞队列:

前面我们学习多线程的经典案例之一:饿汉模式与懒汉模式。两者的区别是创建类的实例的时机不同,前者是迫不及待的去创建类的实例,而后者是迫不得已去创建类的实例。这样就导致了前者在 get 方法中只有"读"操作,不会造成线程安全问题,而后者会出现线程安全问题。最后经过我们的不断深入探索并解决了其中的问题。首先是进行加锁操作,避免了修改操作原子性,其次是加了 if 判断语句,避免了不必要的加锁,从而导致的性能下降,最后,针对指令重排序的问题,在引用变量中加上了 volatile 关键字。如果想更加深入了解,可以点击下面的链接:饿汉模式、懒汉模式、指令重排序等

阻塞队列

现在我们来学习另外一个经典的案例:阻塞队列。
阻塞队列是属于队列的一种,但是和普通的队列相比,它具有以下的特性:
1、它具备线程安全的特点,即使在多线程的环境下,也是可以正常使用的。
2、阻塞特性:1)当队列为空时,如果再去队列中取元素的话,会发生阻塞,直至队列不为
空;2)当队列满了时,如果再去队列中插入元素的话,也会发生阻塞,直至队列不为满。

生产者—消费者模型

阻塞队列的主要应用场景是:“生产者—消费者模型”。那什么是生产者,什么又是消费者呢?简单理解就是,生产者与消费者之间是通过某种资源进行来进行交互的。生产者,就是生产这个资源的,而消费者,就是消耗这个资源的。
例如,在我们日常中,最常见的就是包饺子,包饺子需要擀面皮的人、包饺子的人、放面皮的布。(肉已经被绞肉机给搞好了) 这里就是一个经典的"生产者一消费者模型"。
生产者:擀面皮的人、消费者:包饺子的人、阻塞队列:放面皮的布。这里生产者与消费者进行交互的就是"面皮"这种资源。
我们在日常生活中,有两种包饺子的方式:
1、家里面几个人全部一起参与包饺子的全过程。即每个人都需要 擀面皮、包饺子。而擀面杖只有一个,那么当一个人在进行擀面皮时,另外几个人都得阻塞等待,当这个人把面皮给擀完之后,才会释放,这样下一个人才有机会去使用。这个擀面杖就是我们前面学习的锁。
上面的方式,我们会发现一个很大的缺陷:当其中一个人在生产面皮时,其余的人得阻塞等待,也就是有空闲时间。这对于计算机来说,简直就是浪费,因此下面这种方式更为合理。
2、一个人专门擀面皮,另外的人负责包饺子,这样就不会导致生产者或者消费者会出现空闲的情况(生产速度与消费速度是一致的)。

生产者—消费者模型的优势:

1、解耦合:
生产者与消费者避免了直接交互,而是通过阻塞队列来进行交互,这样有利于代码的解耦合,使得后期的维护成本变低。
2、削峰填谷:
当 生产者—消费者模型 应用于两个服务器时,就可以达到削峰填谷的效果。

在这里插入图片描述

因此为了避免上述的情况,我们需要对用一个阻塞队列来处理这种"突然的大量请求的情况"。例如,学校选课的时候,通常就会出现这样的情况。
解决方法:使用一个阻塞队列来充当缓冲的作用。当A服务器突然接收到有大量的请求时,这个阻塞队列便会接收这些请求,但是还是以平常的速度给到B服务器,这样B服务器还是会正常运行,这就是 “削峰”。当这个峰值过去之后,就是平常少量的请求,而阻塞队列这时候就会来处理在高峰期接收的请求,这样B服务器还是以平常的速度在处理请求,这就是"填谷"。阻塞队列通过降低高峰期的发送请求,而是在低谷期来处理,这样B服务器就是以一个平均的速度在处理请求。
注意:
1、阻塞队列通常可以接收并存放很多的请求。
2、高峰期比较短,所以阻塞队列一般不会出现满的情况。

生产者—消费者模型的劣势:

1、引入阻塞队列之后,整体的结构相交以前更为复杂了,同时也需要更多的机器进行部署,使生产环境的结构更复杂,同时管理起来也更为麻烦了。
2、效率也有一定的影响。之前是A服务器和B服务器直接进行交互,现在多了个阻塞队列,消息的传递所消耗的时间也变多了。

Java标准库中的阻塞队列:

Java的标准库中提供的阻塞队列是:BlockingQueue。

在这里插入图片描述

我们在日常的开发中,主要就是使用:ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue。下面是使用的示例:

在这里插入图片描述

public class Test {public static void main(String[] args) throws InterruptedException {BlockingQueue<Integer> queue = new LinkedBlockingQueue<>(100);// 在多线程中,队列的插入方法要用put。因为其带有阻塞功能,且线程安全queue.put(1);queue.put(2);queue.put(3);queue.put(4);// 同样多线程中的删除也要用takeint n = queue.size();for (int i = 0; i < n; i++) {System.out.print(queue.take()+" "); // 1 2 3 4}}
}

我们现在可以去看一下阻塞功能。

public class Test {public static void main(String[] args) throws InterruptedException {BlockingQueue<Integer> queue = new LinkedBlockingQueue<>(1);// 在队列为空的情况下,尝试去取元素System.out.println(queue.take()); // 由于是单线程,因此会一直阻塞,即死等。queue.put(1);// 在队列为满足,尝试去插入新元素queue.put(2);}
}

同样下面去尝试插入新元素时,也是会发生阻塞等待的,也是死等的情况。

public class Test {public static void main(String[] args) {int n = 1;System.out.println("队列的总容量:"+n);BlockingQueue<Integer> queue = new LinkedBlockingQueue<>(n);System.out.println("队列此时的容量:"+queue.size());Thread t1 = new Thread(()-> {try {System.out.println("阻塞队列为空,尝试取出元素,等待其他的线程插入元素");queue.take();System.out.println("成功取出元素~");} catch (InterruptedException e) {throw new RuntimeException(e);}});Thread t2 = new Thread(()->{try {for (int i = 0; i < 3; i++) {Thread.sleep(1000); // 确保t1线程先执行到take方法,并放慢让我们观察System.out.println("正在尝试插入第" + (i + 1) + "个元素");queue.put(i);System.out.println("插入成功~");}} catch (InterruptedException e) {throw new RuntimeException(e);}});t1.start();t2.start();}
}

运行结果:
在这里插入图片描述

模拟实现阻塞队列:

要求:我们主要是实现队列的 put方法、take方法、size方法即可。

思路:put、take方法都需要保证线程安全和阻塞的特性。
线程安全,我们直接对代码进行加锁操作即可;
阻塞特性:当队列为满时,要阻塞到其他线程使用掉其中的对头元素,即得等待其他线程调用take方法来唤醒当前因队列满而造成的阻塞,这也就需要用到我们前面学习的wait 和 notify 方法。

阻塞队列代码:

public class MyBlockingQueue {// 基于数组去模拟实现private static int[] array = null;private static int usedSize = 0; // 元素个数private int head = 0; // 头指针private int tail = 0; // 尾指针public MyBlockingQueue() {array = new int[10];}public MyBlockingQueue(int capacity) {if (capacity < 0) {throw new RuntimeException();} else if (capacity >= Integer.MAX_VALUE) {array = new int[Integer.MAX_VALUE];} else {array = new int[capacity];}}// put方法public void put(int x) throws InterruptedException {synchronized (this) { // 保证线程安全while (usedSize >= array.length) { // 满足阻塞队列的特性// 阻塞等待this.wait(); // 等待其他线程取出元素,使队列不为满}array[tail] = x;tail = (tail+1) % array.length; // 这里是采用循环队列的方式usedSize++;this.notify(); // 唤醒空的阻塞}}public int take() throws InterruptedException {synchronized (this) { // 保证线程安全while (usedSize <= 0) { // 满足阻塞队列的特性// 阻塞等待this.wait(); // 等待其他线程插入元素,使队列不为空}int ans = array[head];head = (head+1) % array.length;usedSize--;this.notify(); // 唤醒满的阻塞return ans;}}public int size() {return usedSize;}
}

测试代码:

public class Test {public static void main(String[] args) throws InterruptedException {int n = 1;MyBlockingQueue queue = new MyBlockingQueue(n);System.out.println("队列的总容量为:"+n);System.out.println("队列当前的容量为:"+queue.size());Thread t1 = new Thread(()->{try {Thread.sleep(500);System.out.println("队列为空,阻塞等待别的线程插入数据");queue.take();System.out.println("取出元素~");} catch (InterruptedException e) {throw new RuntimeException(e);}});Thread t2 = new Thread(()->{for (int i = 0; i < 3; i++) {try {Thread.sleep(1000);System.out.println("正在尝试插入第"+(i+1)+"个元素");queue.put(i);System.out.println("插入成功~");} catch (InterruptedException e) {throw new RuntimeException(e);}}});t1.start();t2.start();}
}

运行结果:

在这里插入图片描述

注意:
1、我们使用加锁操作,是为了避免出现下面这种情况:一个线程在修改,另一个线程在读取,把数据修改之后,可能会造成另一个线程执行有误,因此我们得对代码进行加锁操作,是同一时刻只能有一个线程去进行修改操作(读取操作是不会影响数据的),因此对于修改操作的代码,都得处于 synchronized 代码块中,而上述 put、take 方法的大部分代码都是修改操作,因此我们就将整个代码逻辑都置于 synchronized 代码块中了。

2、put、take 方法中之所以将判断阻塞的条件放到 while 循环中,是因为可能会出现下面这样的情况:有三个线程都是处于put方法的阻塞状态,而这时新来了一个执行take方法的线程,其会随机唤醒三个线程中的一个,当三个线程中,某个线程执行完 notify 方法之后,也会随机唤醒剩下的两个线程,但是此时这个唤醒操作不符合要求,因为我们是希望将处于take方法的阻塞线程所唤醒,因此这个是错误唤醒,所以我们要用 while 循环去再次线程判断到底是不是因为正常唤醒而被唤醒的。

好啦!本期 初始JavaEE篇——多线程(4):生产者-消费者模型、阻塞队列 的学习之旅 就到此结束啦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/57917.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通过rancher2.7管理k8s1.24及1.24以上版本的k8s集群

目录 初始化实验环境 安装Rancher 登录Rancher平台 通过Rancher2.7管理已存在的k8s最新版集群 文档中的YAML文件配置直接复制粘贴可能存在格式错误&#xff0c;故实验中所需要的YAML文件以及本地包均打包至网盘. 链接&#xff1a;https://pan.baidu.com/s/1oYX4eGoBtW_R-7i…

基于Multisim的音频放大电路设计与仿真

基本设计要求&#xff1a;设计并仿真实现一个音频功率放大器。功率放大器的电源电压为&#xff0b;5V&#xff08;电路其他部分的电源电压不限&#xff09;&#xff0c;负载为8Ω电阻。具体要求如下&#xff1a;1&#xff09;3dB通频带为300&#xff5e;3400Hz&#xff0c;输出…

AGI 之 【Dify】 之 Dify 在 Windows 端本地部署调用 Ollama 本地下载的大模型,实现 API 形式进行聊天对话

AGI 之 【Dify】 之 Dify 在 Windows 端本地部署调用 Ollama 本地下载的大模型&#xff0c;实现 API 形式进行聊天对话 目录 AGI 之 【Dify】 之 Dify 在 Windows 端本地部署调用 Ollama 本地下载的大模型&#xff0c;实现 API 形式进行聊天对话 一、简单介绍 二、创建一个聊…

用ElementPlus开发el-tab结合router-view调用组件时需要注意多次渲染的问题

最近在用vue3elementPlus开发后台界面&#xff0c;用到右侧el-tab这个组件结合router-view实现调用&#xff0c;刚在逛csdn的时候发现一个大佬说如果把router-view放在el-tab-pane下会导致多次渲染&#xff0c;我想还有这事&#xff1f;赶紧测试一下。。。果然&#xff0c;大佬…

Python数字图像处理——基于SIFT特征提取的图像拼接算法(暴力匹配、knn匹配和hist匹配)

&#xff08;1&#xff09;项目概述 本文通过Python实现基于SIFT特征提取的图像拼接算法&#xff0c;包括三种匹配策略&#xff1a;暴力匹配、KNN&#xff08;k近邻&#xff09;匹配和hist直方图的特征匹配。SIFT算法是一种在尺度和旋转上不变的特征提取算法。它能够在图像中找…

Python浪漫之画星星

效果图&#xff08;动态的哦&#xff01;&#xff09;&#xff1a; 完整代码&#xff08;上教程&#xff09;&#xff1a; import turtle import random import time # 导入time模块# 创建一个画布 screen turtle.Screen() screen.bgcolor("red")# 创建一个海龟&a…

PostgreSQL(十三)pgcrypto 扩展实现 AES、PGP 加密,并自定义存储过程

目录 一、pgcrypto 简介1.1 安装 pgcrypto 扩展1.2 pgcrypto 包含的函数 二、用法①&#xff1a;对称加密&#xff08;使用 AES、Blowfish 算法&#xff09;2.1 密钥2.2 密钥偏移量 三、用法②&#xff1a;PGP加解密3.1 什么是PGP算法&#xff1f;3.2 使用 GPG 生成密钥对3.3 列…

TypeScript基础简介

TypeScript是Javascript的一个超集。 TypeScript在原有的基础之上又添加了编译器类型检查的功能&#xff0c;意味着如果使用ts进行开发&#xff0c;会对变量的类型进行较为严格的验证&#xff0c;防止程序员写出可能出错的代码&#xff0c;规范变成习惯&#xff0c;适合大项目开…

网络搜索引擎Shodan(2)

声明&#xff1a;学习视频来自b站up主 泷羽sec&#xff0c;如涉及侵权马上删除文章 声明&#xff1a;本文主要用作技术分享&#xff0c;所有内容仅供参考。任何使用或依赖于本文信息所造成的法律后果均与本人无关。请读者自行判断风险&#xff0c;并遵循相关法律法规。 感谢泷…

vue+spreadjs开发

创建vue3项目 pnpm create vite --registryhttp://registry.npm.taobao.org安装spreadjs包 pnpm install "grapecity-software/spread-sheets17.1.7" "grapecity-software/spread-sheets-resources-zh17.1.7" "grapecity-software/spread-sheets-vu…

基于DDPG算法的股票量化交易

项目源码获取方式见文章末尾&#xff01; 回复暗号&#xff1a;13&#xff0c;免费获取600多个深度学习项目资料&#xff0c;快来加入社群一起学习吧。 **《------往期经典推荐------》**项目名称 1.【基于PyQTFaceNet卷积神经网络实现的学生人脸识别考勤系统】 2.【卫星图像道…

计算机强校99+分《数据库》课设

高校成绩数据库系统设计与实现 1、需求分析 1.1 数据需求描述 1.2 系统功能需求 1.3 其他性能需求 2、概念结构设计 2.1 局部E-R图 2.2 全局E-R图 2.3 优化E-R图 3、逻辑结构设计 3.1 关系模式设计 3.2 数据类型定义 3.3 关系模式的优化 4、物理结构…

川渝地区软件工程考研择校分析

C哥专业提供——计软考研院校选择分析专业课备考指南规划 通过最新数据分析,5所高校软件工程专业2025年考研难度从高到低预计为: 电子科技大学 >> 四川大学 > 重庆大学 ≈ 西南交通大学 > 西南大学 对于想考川渝地区985但核心目标为优先上岸的考生,建议重点考虑西…

Spring Boot助力的厨艺互动平台开发指南

2 相关技术 2.1 Spring Boot框架简介 Spring Boot是由Pivotal团队提供的全新框架&#xff0c;其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置&#xff0c;从而使开发人员不再需要定义样板化的配置。通过这种方式&#xff0c;Sprin…

在浏览器里就可以运行的本地AI模型 - 一键去除图片背景AI

前言 浏览器的功能越来越强大, 从Chrome 113 开始, 谷歌把WebGPU引入到了浏览器中, 通过WebGPU的API, 可以直接访问本机电脑的GPU资源. 既然GPU资源可以在浏览器里运行, 给AI模型推理等带来了便利, 使得一些AI模型可以直接在浏览器里运行. 本文主要介绍介绍以下WebGPU的基本概…

【前端开发入门】JavaScript快速入门--js变量

目录 引言一、为什么要定义变量二、定义变量的一些技巧1. 解构赋值1.1 Object解构赋值1.2 Array解构赋值1.3 总结规律 2. 字符串拼接 三、变量作用域四、总结 引言 本系列教程旨在帮助一些零基础的玩家快速上手前端开发。基于我自学的经验会删减部分使用频率不高的内容&#xf…

uniapp 发起post和get请求!uni.request(OBJECT)

在uni-app中&#xff0c;发起HTTP请求主要通过uni.request方法实现。 Get请求 使用uni.request请求api&#xff0c;并且将 method参数设置为GET&#xff0c;有参数的话直接data&#xff1a;{}传递&#xff0c; success是请求成功回调函数&#xff0c;fail是失败函数 <but…

ipv6地址子网划分

IPv6 从左至右一共有8段地址,每一段用16进制表示&#xff0c;共128位。 例如&#xff1a;2001:0DB8:0001:0000:0000:0000:0000:0000 每一段的子网掩码如下&#xff1a; 第1段的掩码为是 0~16 01616 第2段的掩码为是 17~32 161632 第3段的掩码为是 33~48 …

QQ音乐绿钻音效+DTS音效解锁

​ 工具 mt管理器 simplehook QQ音乐&#xff08;自行下载&#xff09; DTS音效修改方法&#xff1a;com.tencent.qqmusic.business.user.a.r1 赋值为1 绿钻音效修改方法&#xff1a; com.tencent.qqmusic.business.user.a.q1 赋值为1 建议使用hook实现&#xff0c;这里贴上si…

动态IP是什么?

随着互联网成为人们生活的重要组成部分&#xff0c;以信息传递为主导的时代种&#xff0c;网络连接质量对我们的工作效率、学习进度以及娱乐体验等方面都有很大影响。 动态IP&#xff0c;作为网络连接中的一种重要IP代理形式&#xff0c;越来越受到用户的欢迎。本文将深入解析…