redis 高可用 Sentinel 详解

写在前面

redis 在我们日常的业务开发中是十分常见的,而redis的可用性就必须要有很高的要求,那么 redis集群的高可用由有一个或者多个 Sentinel(哨兵) 实例组成的 哨兵系统来保证的。

哨兵

由一个或者多个 Sentinel 实例组成的 Sentinel 系统可以监控任意多个主服务器,以及这些主服务器属下的所有从服务器,并在被监视的主服务器进入下线状态时,自动将下线主服务器属下的某个从服务器升级为新主服务器,然后有新的主服务器代替已下线的主服务器继续处理命令请求。

在这里插入图片描述

简介

Sentinel 本质上只是一个运行在特殊模式下的Redis服务器,但是 Sentinel 和 Redis的初始化和工作内容是不同的。Sentinel 不需要使用数据库,所以初始化的时候是不需要载入RDB文件或者AOF文件的。而Sentinel的工作内容如下:

功能使用情况
数据库键值对命令 SET、DEL、FLUSHDB不使用
事务命令 MULTI,WATCH不使用
脚本命令 EVAL不使用
RDB/AOF持久化命令 SAVE、BGSAVE、BGREWRITEAOF不使用
复制命令,SLAVEOFSentinel 内部使用,但是客户端不用
发布与订阅命令,比如 PUBLISH 和 SUBSCRIBESUBSCRIBE、PSUBSCRIBE、UNSUBSCRIBE、PUBSUBSCRIBE这四个命令在Sentinel内部和客户端都可以使用,但PUBLISH命令只能在Sentinel内部使用
文件事件处理器(负责发送命令和请求、处理命令回复)Sentinel 内部使用,但关联的文件事件处理器和普通Redis处理器不同
事件处理器(负责执行serverCron 函数)Sentinel 内部使用,时间事件的处理器仍然是ServerCron函数,ServerCron函数会调用sentinel.c/sentineTimer函数,后者包含了Sentinel要执行的所有操作

在为什么启动Sentinel的时候,会有这些限制呢?Sentinel 不都是 Redis 吗?

因为在Sentinel初始化的时候,加载的是 src/sentinel.c 文件的函数,而Redis加载的是 src/redis.c 文件的函数,而这两个文件的初始化函数,限定了只能使用哪些命令

数据结构

Sentinel 的结构体如下

typedef struct sentinelRedisInstance {int flags;      // 标识,记录实例类型char *name;     // 该实例名字char *runid;    // 实例的运行iduint64_t config_epoch;  // 配置纪元,用于实现故障转移sentinelAddr *addr; 	// 实例地址mstime_t last_pub_time;   // 上次我们通过 Pub/Sub 发送了 hello 的时间。 mstime_t last_hello_time; // 仅在设置 SRI_SENTINEL 时使用。上次我们发送hello的响应时间mstime_t last_master_down_reply_time; // SENTINEL is-master-down command.命令的最新响应时间// ... mstime_t down_after_period; // 实例无响应多少毫秒之后才会被判断为主观下线// ...// Master 配置unsigned int quorum;// 判断这个实例为客观下线锁需要支持的投票数量// ... // Slave 配置int slave_priority; /* Slave 优先级 */struct sentinelRedisInstance *master; /* Master instance if it's slave. */char *slave_master_host;    /* Master host as reported by INFO */int slave_master_port;      /* Master port as reported by INFO */int slave_master_link_status; /* Master link status as reported by INFO */unsigned long long slave_repl_offset; /* Slave 复制的偏移量. */// ...
} sentinelRedisInstance;

创建链接

初始化Sentinel的最后一步是创建连向被监控主服务器的网络连接,Sentinel 将成为主服务器的客户端,可以向主服务器发送命令,并且从命令回复中获取相关的信息。

对于每个被Sentinel 监视的主服务器来说,Sentinel会创建两个连接主服务器的异步网络连接:

  1. 命令连接,这个连接专门用于向主服务器发送命令,并接受命令回复。
  2. 订阅连接,这个连接专门用于订阅主服务器的 __sentinel__:hello 频道。

为什么会有两个连接?
在Redis目前的发布与订阅功能中,被i发送的信息都不会保存在Redis服务器里面,如果在信息发送时,想要接受信息的客户端不在线或者断线,那么这个客户端就会丢失这条信息。 因此为了不丢失__sentinel__:hello 频道的任何信息,Sentinel必须专门用一个连接来接受该频道的信息。
除了订阅频道之外,Sentinel还必须向主服务器发送命令,以此来与主服务器进行通信,所以Sentinel还必须向主服务器创建命令连接。

在这里插入图片描述

获取信息 INFO

Sentinel 默认会以每十秒一次的频率,通过命令连接向被监视的主服务器发送 INFO命令 ,并通过分析 INFO 命令的回复 来获取主服务器的当前信息。

一般INFO命令的回复有以下信息:

  • 从服务器的运行ID、角色role、优先级slave_priority、复制偏移量
  • 主服务器的IP地址 master_host 以及主服务器的端口号 master_port
  • 主从服务器的连接状态master_link_status

获取到这些信息之后,就会更新存储到Sentinel的结构体中。

在这里插入图片描述

但是当主服务器处于下线状态,或者Sentinel正在对主服务器和从服务器进行故障转移操作时,Sentinel 向从服务器发送INFO命令的频率将会变成每秒一次

发送命令

对于监视同一个主服务器和从服务器的多个Sentinel来说,他们会以每两秒一次的频率,通过被监视服务器的 __sentinel:hello__ 频道发送消息来响应其他sentinel宣告自己的存在。

PUBLISH __sentinel__:hello "<s_ip>,<s_port>,<s_runid>,<s_epoch>,<m_name>,<m_ip>,<m_port>,<m_epoch>"

这条命令向服务器的__sentinel__:hello频道发送一条信息,这些信息的组成如下:

  • s_ 开头的是sentinel本身的信息。
  • m_开头的是主服务器的信息。如果此sentinel监视的是主服务器,那么这个参数就是主服务器的参数,如果监视的是从服务器,那么就是这个从服务器正在所复制的主服务器。

接收命令

当sentinel与一个主服务器或者从服务器建立起订阅连接之后,sentinel就会就会通过订阅连接,向服务器发送以下命令:

SUBSCRIBE __sentinel__:hello

也就是说对于每一个sentinel连接的服务器,sentinel既通过命令连接到服务器的__sentinel__:hello 频道发送信息,又通过订阅连接服务器的__sentinel__:hello频道接受消息。
在这里插入图片描述
那么对于监视同一个服务器的多个sentinel来说,一个sentinel发送的信息就会被其他sentinel接受到,因为是监听订阅了同一个服务器的__sentinel__:hello频道,所sentinel就会感知到其他sentinel的存在。并sentinel将会更新其他的sentinel信息到自己的sentinel字典中。

在这里插入图片描述

sentinel 之间的通信

从上面我们知道每个Sentinel也会从__sentinel:hello__ 频道中接收其他Sentinel发送来的信息,并根据这些信息为其他Sentinel创建实例结构和命令连接。
在这里插入图片描述

但是Sentinel 只会与主服务器和从服务器创建命令连接和订阅连接,Sentinel 和 Sentinel 之间则只创建命令连接。

为什么sentinel与sentinel之间不需要创建订阅连接呢?
首先我们要确定订阅连接是用来干嘛的,订阅连接是用来发现其他节点的而sentinel已经通过主服务器或者从服务器的频道信息来发现未知的sentinel,也就是说sentinel订阅了主/从服务器已经知道了其他的sentinel,就不需要再进行订阅连接其他的sentinel了,而相互已知的sentinel只需要使用命令连接来进行通信就够了。

主/客观下线

Sentinel 会以每秒一次的频率向实例,包括主服务器,从服务器,其他Sentinel发送 PING 命令,并根据实例对PING命令的回复判断实例是否在线,当一个实例在指定的时长中连续向Sentinel发送无效回复时,Sentinel就会判断为主观下线。

在这里插入图片描述
Sentinel1 将向 Sentinel2、server、slave1、slave2发送ping命令。sentinel2也会进行同样的操作。那么一般会得到以下两种情况的回复

  • 有效回复:返回 PONG、LOADING、MASTERDOWN 三个中的一个
  • 无效回复:非有效回复的内容,或者是指定时间内没有返回任何的回复,而这个指定时间的字段为down-after-milliseconds

当Sentinel讲一个主服务器判断为主观下线,他会向同样监视这个主服务器的其他 Sentinel 进行询问,如果有足够多的结点判定这个主服务器为主观下线,那么就状态改成客观下线,某个节点的状态改成客观下线之后,监视这个节点的各个sentinel就会协商选取一个leader sentinel节点,并且由领头的 leader sentinel 节点发起一次针对主服务器的故障转移。

这个选举的过程在这里就不过多介绍了。有点类似raft。后面有空再说明。

故障转移

在选举出leader sentinel节点之后的故障转移会做以下几件事情:

  1. 在已下线主服务器属下的所有从服务器里面,挑选出一个从服务器,并将其转化成主服务器
  2. 让已下线的主服务器属下的所有从服务器改成复制新的主服务器。
  3. 将已下线主服务器设置为新的从服务器

新的主服务器是如何挑选出来的呢?首先leader sentinel节点会将已下线主服务器的所有从服务器保存到一个列表,根据一些规则进行过滤:

  1. 删除已下线或者状态不正常的从服务器,保证列表中剩余的从服务器是正常的。
  2. 删除所有最近5秒内没有回复leader sentinel节点的INFO命令的从服务器,保证列表中的从服务器都是最新通信成功的
  3. 删除与已下线的主服务器连接断开超过 down-after-milliseconds * 10 毫秒的从服务器,保证剩余的服务器保存的数据都是比较新

down-after-milliseconds:实例失去联系的时间,而删除断开这个时间的10倍,是为了能保证剩余的从服务器没有过早的与主服务器断开连接。

  1. 会根据从服务器的优先级进行排序,选择最高优先级的从服务器,如果相同优先级,则选择偏移量最大服务器。因为偏移量大意味着数据最新。

易主

选择完主服务器之后,就开始改变从服务器的复制对象了。这一动作可以通过向服务器发送SLAVEOF的命令来实现。
在这里插入图片描述

本文我们详细介绍了redis集群中sentinel的数据结构,sentinel与主从服务器的连接,信息传递,以及主从服务器发生故障时的处理方式。

那么问题来了?如果sentinel 集群中某一个sentinel节点挂了会发送什么事情呢?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/5642.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

53.HarmonyOS鸿蒙系统 App(ArkTS) socket套接字连接失败无效参数--invalid argument

ark ts socket套接字连接失败无效参数--invalid argument 绑定本机真实连接的WIFI的IP&#xff0c;不要绑定127.0.0.1

VS code 同步odata服务

在做UI5得开发过程中&#xff0c;经常会出现odata需要更新 那么已经加载过得项目如何去跟新odata服务呢 可以通过如下步骤 1.右键打开应用信息 2.找到manage service models 3.点击编辑 4.选中 刷新并保存

《STM32 HAL库》中断相关函数详尽解析——NVIC

观前提醒&#xff1a;本文以外部中断点灯为例&#xff0c;分析了HAL库中中断服务相关函数的使用及相互关联、底层原理 一、实例实现 实例简介&#xff1a;主函数控制LED2进行闪烁&#xff0c;中断控制LED0开关 我们先使用CubeMX创建项目文件&#xff1a; 1、在System Core中配…

XY_RE复现(五)

一&#xff0c;给阿姨倒一杯卡布奇诺 是一道魔改TEA加密 给出了一些初始化&#xff0c;然后输入的flag拆分&#xff0c;两两一组&#xff0c;通过for循环放入encrypt加密函数 #include <stdio.h> #define uint32_t unsigned intvoid decrypt(uint32_t *v, uint32_t *ke…

【STM32F407+CUBEMX+FreeRTOS+lwIP netconn UDP TCP记录】

STM32F407CUBEMXFreeRTOSlwIP netconn UDP TCP记录 注意UDPUDP1UDP2 TCPTCP clientTCP server图片 注意 1、超时 #include “lwipopts.h” #define LWIP_SO_RCVTIMEO 12、先保证能ping通 3、关于工程创建可参考 【STM32F407CUBEMXFreeRTOSlwIP之UDP记录】 4、…

数据仓库Data Warehouse

数据仓库Data Warehouse 数仓是一种思想,数仓是一种规范,数仓是一种解决方案 1. 数据处理方式 数据处理大致可以分成两大类: 联机事务处理OLTP(on-line transaction processing)联机分析处理OLAP(On-Line Analytical Processing)1.1. OLTP OLTP的全称是On-line Transa…

【C++】详解string类

目录 简介 框架 构造 全缺省构造函数 ​编辑 传对象构造函数 拷贝构造 析构函数 容量 size() capacity&#xff08;&#xff09; empty() clear() reserve() ​编辑 resize() 遍历 检引用符号"[ ]"的重载 迭代器 begin() end() rbegin() rend(…

使用Mybatis映射时间 DateTime ==> LocalDateTime

首先查看&#xff0c;数据库字段&#xff1a; 书写映射实体类对象VO&#xff1a; Data public class OrderListVO implements Serializable {private Integer orderId;private String memberName;private String orderNumber;private BigDecimal orderPrice;private String l…

在单细胞分辨率下预测细胞对新型药物扰动的反应

scRNA-seq能够在单个细胞分辨率下研究细胞异质性对扰动的响应。然而&#xff0c;由于技术限制&#xff0c;扩大高通量筛选&#xff08;HTSs&#xff0c;highthroughput screens&#xff09;来测量许多药物的细胞反应仍然是一个挑战。因此&#xff0c;目前依然需要借助常规的bul…

excel表格在筛选状态下,怎样从指定数字开始填充序列?

分两种情况分开来说吧&#xff1a; 一、表格根据需要做数据筛选&#xff0c;指定列的序号始终保持0012开始的连续序号。 B2TEXT(AGGREGATE(3,5,B$1:B1)11,"0000") 然后向下填充公式。 当C列数据做了筛选以后&#xff0c;B列仍旧保持连续的序号&#xff0c;改变筛选…

MySQL连表查询

MySQL简介&#xff0c;我们为什么要学习各种join MySQL是SQL的一种&#xff0c;SQL意为结构化查询语言(Structure Query Language)&#xff0c;MySQL可以应用于现实世界的各种结构化数据。 SQL&#xff08;结构化查询语言&#xff09;&#xff0c;处理结构化数据的查询语言&a…

房产中介小程序高效开发攻略:从模板到上线一站式服务

对于房产中介而言&#xff0c;拥有一个高效且用户友好的小程序是提升业务、增强客户黏性的关键。而采用直接复制模板的开发方式&#xff0c;无疑是实现这一目标的最佳途径&#xff0c;不仅简单快捷&#xff0c;而且性价比极高。 在众多小程序模板开发平台中&#xff0c;乔拓云网…

Java项目:基于SSM框架实现的高校专业信息管理系统设计与实现(ssm+B/S架构+源码+数据库+毕业论文+PPT+开题报告)

一、项目简介 本项目是一套基于SSM框架实现的高校专业信息管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、…

前端vite+rollup前端监控初始化——封装基础fmp消耗时间的npm包并且发布npm beta版本

文章目录 ⭐前言&#x1f496;vue3系列文章 ⭐初始化npm项目&#x1f496;type为module&#x1f496;rollup.config.js ⭐封装fmp耗时计算的class&#x1f496;npm build打包class对象 ⭐发布npm的beta版本&#x1f496; npm发布beta版本 ⭐安装web-performance-tool的beta版本…

5G前传光纤传输的25G光模块晶振SG2016CAN

一款适用于5G前传光纤传输网络中的25G光模块的5G晶振SG2016CAN。随着5G时代的到来&#xff0c;5G晶振的重要性也不言而喻&#xff0c;小体积宽温晶振SG2016CAN可以用于5G前传的25G光模块&#xff0c;具有高稳定性、小体积、宽温等优势。在5G前传光纤传输网络中&#xff0c;25G光…

Mac 上安装多版本的 JDK 且实现 自由切换

背景 当前电脑上已经安装了 jdk8; 现在再安装 jdk17。 期望 完成 jdk17 的安装&#xff0c;并且完成 环境变量 的配置&#xff0c;实现自由切换。 前置补充知识 jdk 的安装路径 可以通过查看以下目录中的内容&#xff0c;确认当前已经安装的 jdk 版本。 cd /Library/Java/Java…

【大前端】ECharts 绘制立体柱状图

立体柱状图分为&#xff1a; 纯色立体柱状图渐变立体柱状图 常用实现方式 纯色立体柱状图 纯色立体柱状图&#xff0c;使用MarkPoint和颜色渐变就实现&#xff0c;如下代码 import * as echarts from "echarts";var chartDom document.getElementById("main&…

AI大模型探索之路-训练篇9:大语言模型Transformer库-Pipeline组件实践

系列篇章&#x1f4a5; AI大模型探索之路-训练篇1&#xff1a;大语言模型微调基础认知 AI大模型探索之路-训练篇2&#xff1a;大语言模型预训练基础认知 AI大模型探索之路-训练篇3&#xff1a;大语言模型全景解读 AI大模型探索之路-训练篇4&#xff1a;大语言模型训练数据集概…

Android View事件分发面试问题及回答

问题 1: 请简述Android中View的事件分发机制是如何工作的&#xff1f; 答案: 在Android中&#xff0c;事件分发机制主要涉及到三个主要方法&#xff1a;dispatchTouchEvent(), onInterceptTouchEvent(), 和 onTouchEvent(). 当一个触摸事件发生时&#xff0c;首先被Activity的…

展会资讯 | 现场精彩回顾 阿尔泰科技参展2024第23届中国国际(西部)光电产业!

2024第23届中国国际&#xff08;西部&#xff09;光电产业博览会&#xff0c;在成都世纪城新国际会展中心圆满落幕&#xff01;来自各地的光电领域设备及材料厂商汇聚一堂&#xff0c;展示前沿技术及创新成果。 展会现场&#xff0c;来自全国各地的500余家企业就精密光学、信息…