程序猿成长之路之设计模式篇——设计模式简介

无论是对于代码质量还是代码可维护性、可扩展性,使用合适的设计模式都能够起到促进提升的作用,此外在软考的软件工程师、系统架构师职称考试中,设计模式也是必考的一块内容,因此我打算开拓一个新的专栏简单介绍一下设计模式,梳理梳理一些重要的设计模式,帮助各位更好的了解各类型的设计模式以及使用不同类型的设计模式可以带来的好处。

什么是设计模式

如果说代码是一道菜,那么设计模式就如同调料,合理使用可以使代码变得更加得精美;如果说代码是一堆积木,那么设计模式就是搭建积木的手册,合理使用可以使代码变成想要的形状。为了帮助各位了解什么是设计模式,我再举一个例子:
假设现在有1和2两个数字,在不添加其他条件和环境的情况下这两个数字毫无相关性,但是现在有了运算符,有了数学公式,就可以将这两个数字联系起来了,就比如加法运算,1+2 = 3。其中1、2这两个数字可以理解成两个代码片段,而将两个数字相关联的公式可以理解成设计模式,通过设计模式可以将原本看上去不相关的代码片段联系起来,并产生我们想要的结果。

设计模式的好处

  1. 设计模式可以提高代码的可维护性及可扩展性,符合开闭原则(对扩展开放,对修改关闭)。举个例子,我们已经设计开发了一个类,并且该类符合单一职责原则(一个类仅仅满足实现一个特定的功能)就比如说要进行员工行为明细的录入,我们想在尽可能减少代码改动量和不改动原代码的前提下进行功能上的扩展,比如在录入之后还要对针对员工进行消息推送。这时候我们就可以使用适配器、装饰器或者代理设计模式。这样做的好处就是可以在不改动原来代码的基础上实现功能上的扩展。
  2. 设计模式可以保证数据的一致性。比如在项目范围内获取一个容器对象,并且要保证获取的容器对象是唯一的,这时候就可以使用单例设计模式。
  3. 设计模式可以减少代码的修改量,比如我们使用组合策略,可以在只改动组合类的代码就可以实现代码的调整。
  4. 设计模式可以优化代码结构。

设计模式有哪些分类

  1. 创建型设计模式:提供了一种在创建对象的同时隐藏创建逻辑的方式,而不是使用new 直接实例化对象。这使得程序在判断针对某个给定实例需要创建哪些对象时更加灵活。常见的创建型设计模式有:工厂模式、抽象工厂模式、单例模式、建造者模式、原型模式、静态工厂模式。
  2. 结构型设计模式:这些设计模式关注类和对象的组合。继承的概念被用来组合接口和定义组合对象获得新功能的方式。常见的结构型设计模式有:装饰器、适配器设计模式、外观设计模式、组合设计模式。
  3. 行为型设计模式:关注行为本身的设计模式,比如关注观察者及被观察者通信的观察者设计模式,关注迭代器间调用的迭代器模式、关注不同行为响应策略的策略模式等。

用一个图片来整体描述一下设计模式之间的关系:
在这里插入图片描述

几类设计模式简介

  1. 创建型设计模式
    抽象工厂设计模式:不同工厂类中有不同的产品,但是产品类型是一致的,就比如说海尔有海尔工厂,西门子有西门子工厂,但是无论是海尔还是西门子都生产冰箱等家电产品。如下图所示,ProductA和ProductB都是抽象出来的产品类型,如冰箱和洗衣机,而ConcreteFactory1就可以是海尔集团,ConcreteFactory2就可以是西门子集团,那么ConcreteProductA1就是海尔生产的冰箱而ConcreteProductA2就是西门生产的冰箱,以此类推。
    在这里插入图片描述

  2. 结构型设计模式
    装饰器设计模式
    通过层层嵌套实现完整功能。采用了组合优于继承的策略。
    举例:java中的io代码,
    在这里插入图片描述

InputStream in = new FileInputStream("/test.txt");
InputStream bin = new BufferedInputStream(in);
byte[] data = new byte[128];
while(bin.read(data) != -1) {//...
}

其中in嵌套到BufferedInputStream中就用到了装饰器的嵌套,都是基于InputStream的实现类。

其他示例代码:

package decorator;
/*** 基础接口* @author zygswo**/
public interface BasePrinter {/*** 打印信息* @param msg*/void print();
}package decorator;/*** child接口* @author zygswo*/
public class ChildPrinter implements BasePrinter{/*** 打印日志*/protected volatile BasePrinter printer;/*** 构造方法* @param printer*/public ChildPrinter(BasePrinter printer) {this.printer = printer;}@Overridepublic void print() {System.out.println("ChildPrinter print start");printer.print();System.out.println("ChildPrinter print end");}
}
package decorator;
/*** parent接口* @author zygswo*/
public class ParentPrinter implements BasePrinter{/*** 打印日志*/protected volatile BasePrinter printer;/*** 构造方法* @param printer*/public ParentPrinter(BasePrinter printer) {this.printer = printer;}@Overridepublic void print() {System.out.println("ParentPrinter print start");printer.print();System.out.println("ParentPrinter print end");}
}package decorator;
/*** 接口传参类* @author zygswo*/
public class Printer implements BasePrinter{private String message;public Printer(String message) {this.message = message;}@Overridepublic void print() {System.out.println(message);}
}package decorator;public class Main {public static void main(String[] args) {BasePrinter myprinter = new Printer("hello world");//装饰器层层嵌套BasePrinter childPrinter = new ChildPrinter(new 		ParentPrinter(myprinter));childPrinter.print();}
}
  1. 行为型设计模式

观察者设计模式:通过设置观察者和被观察者,使得当被观察者的状态发生变化后,可以及时通知观察者。

示例代码:

/*** 被观察者* @author zygswo*/
public interface Subject{/*** 绑定观察者*/void registerObserver(Observer observer);/*** 通知观察者*/void notifyObserver(String message);
}/*** 观察者* @author zygswo*/
public interface Observer{/*** 更新观察者状态*/void update(Message message);
}/*** 被观察者* @author zygswo*/
public class ConcreteSubject implements Subject{private List<Observer> observers = new ArrayList<>();@Overridepublic void registerObserver(Observer observer) {this.observers.add(observer);}@Overridepublic void notifyObserver(String message) {for(Observer observer: observers) {observer.update(message); //更新观察者信息}}
}/*** 观察者1* @author zygswo*/
public class ConcreteObserverOne implements Observer{@Overridepublic void update(String message) {System.out.println(message);System.out.println("observer1 is updated");}
}/*** 观察者2* @author zygswo*/
public class ConcreteObserverTwo implements Observer{@Overridepublic void update(String message) {System.out.println(message);System.out.println("observer2 is updated");}
}public class Main {public static void main(String[] args) {Subject subject = new Subject();subject.registerObserver(new ConcreteObserverOne());subject.registerObserver(new ConcreteObserverTwo());subject.notifyObserver("hello world");}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/55328.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

腾讯一面-LRU缓存

为了设计一个满足LRU&#xff08;最近最少使用&#xff09;缓存约束的数据结构&#xff0c;我们可以使用哈希表&#xff08;HashMap&#xff09;来存储键值对&#xff0c;以便在O(1)时间复杂度内访问任意键。同时&#xff0c;我们还需要一个双向链表&#xff08;Doubly Linked …

智慧水务可视化:高效管理水资源

利用图扑先进的可视化技术&#xff0c;实现对水资源的实时监控与高效管理&#xff0c;提高水务工作的透明度和决策效率&#xff0c;促进水资源的可持续利用。

太原网站制作打造企业网站的关键要素

太原网站制作&#xff1a;打造企业网站的关键要素 在数字化时代&#xff0c;企业网站成为了品牌形象和市场营销的重要一环。太原的企业在进行网站制作时&#xff0c;需要关注几个关键要素&#xff0c;以确保网站能够有效提升企业竞争力和用户体验。 **1. 目标明确** 在网站制…

利用Spring Boot打造新闻推荐解决方案

1系统概述 1.1 研究背景 如今互联网高速发展&#xff0c;网络遍布全球&#xff0c;通过互联网发布的消息能快而方便的传播到世界每个角落&#xff0c;并且互联网上能传播的信息也很广&#xff0c;比如文字、图片、声音、视频等。从而&#xff0c;这种种好处使得互联网成了信息传…

Elasticsearch 8.16 和 JDK 23 中的语言环境变化

作者&#xff1a;来自 Elastic Simon Cooper 随着 JDK 23 即将发布&#xff0c;语言环境信息中有一些重大变化&#xff0c;这将影响 Elasticsearch 以及你提取和格式化日期时间数据的方式。首先&#xff0c;介绍一些背景知识。 什么是语言环境&#xff1f; 每次 Java 程序需要…

资源《Arduino 扩展板4-单游戏摇杆》说明。

资源链接&#xff1a; Arduino 扩展板4-单游戏摇杆 1.文件明细&#xff1a; 2.文件内容说明 包含&#xff1a;AD工程、原理图、PCB。 3.内容展示 4.简述 该文件为PCB工程&#xff0c;采用AD做的。 该文件打板后配合Arduino使用&#xff0c;属于Arduino的扩展板。 该文件…

JVM和GC监控技术

一、监控技术简介 JVM是什么&#xff1f;项目里面有JVM吗&#xff1f;JVM跟Tomcat有什么关系&#xff1f;为什么需要去分析JVM&#xff1f; 1. JVM(全称&#xff1a;Java Virtual Machine)&#xff0c;Java虚拟机 是Java程序运行的环境&#xff0c;它是一个虚构的计算机&…

Netty 与 WebSocket之间的关系

WebSocketProtocolHandler 和 Netty 在处理 WebSocket 连接时扮演不同的角色&#xff0c;但它们通常是一起使用的&#xff0c;尤其是在基于 Netty 的项目中。为了更好地理解它们之间的区别&#xff0c;我们首先需要了解 WebSocket 和 Netty 的基本概念。 WebSocket WebSocket…

RK3568平台(显示篇)车机图像显示偏白问题分析

一.显示偏白图片对比 正常图像: 偏白图像: 二.分析过程

51单片机系列-按键检测原理

&#x1f308;个人主页&#xff1a;羽晨同学 &#x1f4ab;个人格言:“成为自己未来的主人~” 独立按键是检测低电平的。 下面我们来看一张对应的电路原理图&#xff1a; 在这张图当中&#xff0c;P1&#xff0c;P2&#xff0c;P3内部都上拉了电阻&#xff0c;但是P0没有&am…

day03 笔试练习

1.简写单词 题目链接&#xff1a;简写单词_牛客题霸_牛客网 public static void main(String[] args) {Scanner sc new Scanner(System.in);while(sc.hasNext()){ // 输入多少读入多少char ch sc.next().charAt(0); // 提取首字母if(ch > a && ch < z){System…

项目定位与服务器(SERVER)模块划分

目录 定位 HTTP协议以及HTTP服务器 高并发服务器 单Reactor单线程 单Reactor多线程 多Reactor多线程 模块划分 SERVER模块划分 Buffer 模块 Socket模块 Channel 模块 Connection模块 Acceptor模块 TimerQueue模块 Poller模块 EventLoop模块 TcpServer模块 SE…

ElementUI el-tree 树组件 增加辅助线

需求 项目需求给elementUI的el-tree添加辅助线&#xff0c;并且不能使用其他插件&#xff0c;没办法只能该样式了。 效果 代码 html <template><div><el-scrollbar class"long-content"><el-tree node-key"id":data"deptTre…

Android 简单实现联系人列表+字母索引联动效果

效果如上图。 Main Ideas 左右两个列表左列表展示人员数据&#xff0c;含有姓氏首字母的 header item右列表是一个全由姓氏首字母组成的索引列表&#xff0c;点击某个item&#xff0c;展示一个气泡组件(它会自动延时关闭)&#xff0c; 左列表滚动并显示与点击的索引列表item …

k8s搭建一主三从的mysql8集群---无坑

一&#xff0c;环境准备 1.1 k8s集群服务器 ip角色系统主机名cpumem192.168.40.129mastercentos7.9k8smaster48192.168.40.130node1centos7.9k8snode148192.168.40.131node2centos7.9k8snode248192.168.40.132node3centos7.9k8snode348 k8s集群操作请参考《K8s安装部署&…

算法种类丰富,分析准确率业内领先的智慧能源开源了

一、简介 AI视频监控平台, 是一款功能强大且简单易用的实时算法视频监控系统。愿景在最底层打通各大芯片厂商相互间的壁垒&#xff0c;省去繁琐重复的适配流程&#xff0c;实现芯片、算法、应用的全流程组合&#xff0c;减少企业级应用约 95%的开发成本&#xff0c;在强大视频算…

Java | Leetcode Java题解之第450题删除二叉搜索树中的节点

题目&#xff1a; 题解&#xff1a; class Solution {public TreeNode deleteNode(TreeNode root, int key) {TreeNode cur root, curParent null;while (cur ! null && cur.val ! key) {curParent cur;if (cur.val > key) {cur cur.left;} else {cur cur.rig…

docker快速安装ELK

一、创建elk目录 创建/elk/elasticsearch/data/目录 mkdir -p /usr/local/share/elk/elasticsearch/data/ 创建/elk/logstash/pipeline/目录 mkdir -p /usr/local/share/elk/logstash/pipeline/ 创建/elk/kibana/conf/目录 mkdir -p /usr/local/share/elk/kibana/conf/ 二、创建…

基于ESP8266—AT指令连接阿里云+MQTT透传数据(1)

在阿里云创建MQTT产品的过程涉及几个关键步骤,主要包括注册阿里云账号、实名认证、开通MQTT服务实例、创建产品与设备等。以下是详细的步骤说明: 一、准备工作 访问阿里云官网,点击注册按钮,填写相关信息(如账号、密码、手机号等)完成注册。注册完成后,需要对账号进行实…

FOC电机驱动开发踩坑记录

关键技术 SVPWM电机磁场控制电流采样park变换和Clark变换滑膜观测器&#xff08;无感FOC&#xff09; SVPWM电机磁场控制 SVPWM主要思想是通过精确的对UVW三相电流的分时控制&#xff0c;来控制转子的合成力矩&#xff0c;达到目标方向&#xff0c;常用的是6分区的设计&…