沈阳公司做网站的/百度安装app

沈阳公司做网站的,百度安装app,新疆网站建设咨询,一个完整的营销策划案范文在 TDengine 3.2.3.0 版本中,我们针对流式计算新增了计数窗口,进一步优化了流式数据处理的能力。本文将为大家解读流式计算与几大窗口的关系,并针对新增的计数窗口进行详细的介绍,帮助大家进一步了解 TDengine 流式计算&#xff0…

在 TDengine 3.2.3.0 版本中,我们针对流式计算新增了计数窗口,进一步优化了流式数据处理的能力。本文将为大家解读流式计算与几大窗口的关系,并针对新增的计数窗口进行详细的介绍,帮助大家进一步了解 TDengine 流式计算,以便更好地进行应用。

什么是 TDengine 流计算?

流计算是一种数据处理方式,旨在实时处理和分析数据流,以便在数据到达时以极低的延迟生成结果。随着物联网(IoT)、大数据和实时分析需求的不断增长,流计算在现代数据处理架构中变得愈发重要。TDengine 作为一款专为时序数据设计的数据库,提供了强大的流计算能力,以满足实时数据处理的需求。

随着数据量的不断增加,使用 SQL 语句进行查询时,查询的耗时可能会显著增加。当查询时间超过 5 秒时,用户的人机交互体验往往会受到影响。这种情况下,预先生成中间结果以加速查询显得尤为重要。尽管 TDengine 提供了多种预计算方法,但这些方法在灵活性上存在一定限制,特别是在定义计算窗口方面。因此,对于某些特定的查询需求,流计算成为了一个更优的选择。

在实际应用中,流计算特别适合于大屏展示、即席查询和实时告警等场景。这些场景通常要求快速响应,任何延迟都可能影响决策或用户体验。通过流计算,用户可以将耗时较长的计算结果存储到额外的结果表中,并在数据写入时实时更新最近一个窗口的计算结果。这意味着用户只需查询数据量较小的结果表,就能够快速获取所需的计算结果,从而显著提高了查询效率和响应速度。

此外,虽然数据订阅也可以达到类似流计算的效果,但这种方式需要用户自己编写数据订阅程序。这不仅增加了开发的复杂性,还需要额外的机制来确保该程序的高可用性。例如,当程序意外重启或迁移到其他节点时,需要能够复用之前的计算状态,以防止数据丢失或计算中断。因此,相比于数据订阅,TDengine 的流计算提供了更为简单和高效的解决方案,能够更好地满足实时数据处理的需求。

TDengine 流计算主要包括以下几大特点:

  1. 基于事件订阅:流计算采用事件驱动的方式,能够轻松处理乱序数据,确保数据处理的及时性和准确性。这种方式使得系统能够在数据到达时立即进行处理,极大地降低了延迟。

  2. 多种窗口支持:TDengine 支持多种计算窗口,包括时间窗口、状态窗口、会话窗口和计数窗口,并且支持滑动窗口。这种灵活的窗口设置使得用户能够根据业务需求,定义合适的计算范围。

  3. 设备维度计算:流计算能够按照设备维度进行计算,这意味着用户可以针对特定设备的数据进行快速计算,降低了 CPU 的消耗,提高了效率。

TDengine 流式计算在许多方面优于其他流计算框架,其中一个显著的优势是它支持对历史数据的计算。大多数流计算框架通常仅能处理从流计算创建时开始的数据,这使得它们在分析长时间跨度的数据时受到限制。而 TDengine 则允许用户对历史数据进行计算,这对于需要回溯分析或综合考虑历史趋势的场景来说极为重要。

此外,TDengine 还具备出色的过期数据处理能力。当窗口关闭后,其他框架可能无法有效处理过期数据,而 TDengine 则能够从时序数据存储引擎中查找窗口的历史数据,并重新计算以获得准确的结果。这种能力确保在窗口关闭之后,用户仍然可以获得完整和精确的数据分析,从而提升了数据处理的可靠性和准确性。

读到这里,如果你想要进行基于 TDengine 的流式计算实操,可以参考官网提供的详细教程:https://docs.taosdata.com/advanced/stream/。

什么是“窗口”?

窗口是一种数据处理机制,用于将无界的、连续的流数据划分为有限的、可管理的部分。通过这种划分,流计算引擎可以对每个窗口内的数据进行聚合计算,从而生成有意义的统计信息。例如,我们可以计算某个时间段内的平均值、总和、最大值或最小值等。

在数据处理领域,尤其是在流计算中,窗口是一个至关重要的概念。它用于将连续的时序数据拆分成有限大小的“存储桶”,每个存储桶中包含若干条记录,对这些记录进行聚合计算后,再将结果写入到其他数据表中。这种拆分方式使得我们能够对数据进行有效的处理和分析,尤其是在实时数据流的情况下。

在流计算中,如果不设置窗口,计算操作通常只能使用标量函数。标量函数是指作用于单个值的函数,例如求平方、取绝对值等。这意味着在没有窗口的情况下,无法进行复杂的数据聚合和统计分析。而窗口的引入,使得我们能够在实时数据流中进行更加复杂的聚合计算,从而提升流计算的能力和灵活性。

在 TDengine 中,窗口主要有以下几种不同的类型:

  • 会话窗口:根据记录的时间戳主键的值来确定是否属于同一个会话。相同会话中的记录时间戳之间的差异小于预设的会话间隔时,这些记录被视为同一会话的一部分。

  • 状态窗口:使用整数(布尔值)或字符串来标识产生记录时候设备的状态量。产生的记录如果具有相同的状态量数值则归属于同一个状态窗口,数值改变后该窗口关闭

  • 时间窗口:时间窗口是根据时间段来划分的,又可分为滑动时间窗口和翻转时间窗口。滑动时间窗口会随着时间的推移而动态更新,而翻转时间窗口则是在固定时间段内进行聚合。

  • 事件窗口:事件窗口根据开始条件和结束条件来划定窗口,当 start_trigger_condition 满足时则窗口开始,直到 end_trigger_condition 满足时窗口关闭。

以及下文要着重介绍的在 3.2.3.0 版本中新增的计数窗口。在实际应用中,用户可以根据需求将多种窗口类型组合使用,以实现更复杂的分析。

计数窗口详解

计数窗口根据固定的数据行数进行划分。默认情况下,数据首先按时间戳排序,然后根据 count_val 的值将数据分成多个窗口,并进行聚合计算。count_val 表示每个窗口中包含的最大数据行数。如果总数据行数不能被 count_val 整除,则最后一个窗口的行数将小于 count_val。sliding_val 是一个常量,表示窗口滑动的数量,类似于 interval 的滑动窗口概念。

window_clause: {SESSION(ts_col, tol_val)| STATE_WINDOW(col)| INTERVAL(interval_val [, interval_offset]) [SLIDING (sliding_val)] [FILL(fill_mod_and_val)]| EVENT_WINDOW START WITH start_trigger_condition END WITH end_trigger_condition| COUNT_WINDOW(count_val[, sliding_val])}

以下面的 SQL 语句为例,计数窗口切分如图所示:

select _wstart, _wend, count(*) from t count_window(4);

计数窗口在许多场景中具有重要应用。例如,在公路收费站,每当一辆车通过时,系统便会生成一条记录,通过计数窗口可以实时监测和显示车辆的密集程度。这种实时数据分析有助于管理交通流量,优化收费站的运营效率,确保道路畅通。

另一个典型应用是在生产制造车间。每当生产出 100 件设备,就会形成一个新的批次,此时可以利用计数窗口统计该批次的各种参数,如环境温度和生产速度。这种数据的实时采集与分析,不仅能提高生产过程的透明度,还能帮助管理人员及时调整生产策略,确保产品质量与生产效率。

以公路收费站进行如下应用示例:

CREATE STREAM stream_nameTRIGGER at_once IGNORE EXPIRED 1 IGNORE UPDATE 0 WATERMARK 100sINTO stream_stb_nameASSELECT _wstart AS ts, count(*) c1, sum(b), max(c)FROM stPARTITION BY tbname, ta, aCOUNT_WINWOW(9);

如果你想了解关于更多窗口的应用实例,可以查阅官方文档:https://docs.taosdata.com/reference/taos-sql/distinguished/#%E8%AE%A1%E6%95%B0%E7%AA%97%E5%8F%A3

结语

通过本文,可以看到流式计算与窗口机制之间的密切关系。计数窗口的引入为用户提供了更灵活、高效的数据处理能力,使得在实时数据分析中能够获得更好的性能表现。希望本文能帮助你更好地理解并应用 TDengine 的流计算功能,欢迎大家体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/55238.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Hive和Hadoop的病例分析系统

本项目是一个基于大数据技术的医疗病历分析系统,旨在为用户提供全面的病历信息和深入的医疗数据分析。系统采用 Hadoop 平台进行大规模数据存储和处理,利用 MapReduce 进行数据分析和处理,通过 Sqoop 实现数据的导入导出,以 Spark…

uniapp中实现评分组件,多用于购买商品后,对商品进行评价等场景

前言 uni-rate是uniapp框架中提供的一个评分组件。它可以用于用户评价、打分等场景。uni-rate组件可以根据设定的星星总数,展示用户评分的效果,用户可以通过点击星星或滑动星星的方式进行评分。同时,uni-rate组件也支持自定义星星图标、星星…

AI助手——合理利用AI写作的相关方法

引言 概述AI助手的出现与应用现状 AI助手的出现是随着人工智能技术的不断进步而逐渐成为现实。AI助手是利用人工智能技术开发的智能辅助工具,可以在多个领域提供帮助和支持。在写作领域,AI助手的应用越来越广泛。 AI助手可以帮助写作者更高效地完成文本…

新品 | Teledyne FLIR IIS 推出Forge 1GigE SWIR 短波红外工业相机系列

近日,51camera的合作伙伴Teledyne FLIR IIS推出了新品Forge 1GigE SWIR 130万像素的红外相机。 Forge 1GigE SWIR系列的首款相机配备宽频带、高灵敏度的Sony SenSWIR™️ 130万像素IMX990 InGaAs传感器。这款先进的传感器采用5um像素捕捉可见光和SWIR光谱&#xff…

大语言模型知识点分享

1 目前主流的开源模型体系有哪些? Prefix Decoder 系列模型 核心点: 输入采用双向注意力机制,输出为单向注意力。双向注意力意味着输入的每个部分都可以关注到输入的所有其他部分,这在理解上下文时具有很强的优势。 代表模型&a…

ubuntu 安装harbor

#安装包 wget https://github.com/goharbor/harbor/releases/download/v2.10.3/harbor-offline-installer-v2.10.3.tgz wget https://github.com/goharbor/harbor/releases/download/v2.10.3/harbor-offline-installer-v2.10.3.tgz.asc#导入签名公钥 gpg --keyserver hkps://ke…

Qemu开发ARM篇-7、uboot以及系统网络连接及配置

文章目录 1、uboot及linux版本网络设置1、宿主机虚拟网卡创建2、uboot使用tap0网卡3、启动测试 2、访问外网设置 在上一篇Qemu开发ARM篇-6、emmc/SD卡AB分区镜像制作并通过uboot进行挂载启动中,我们制作了AB分区系统镜像,并成功通过uboot加载kernel以及d…

Windows:win11旗舰版连接无线显示器,连接失败

摘要:win11系统通过 miracast 无线连接到长虹电视的时候,一直连接不上。查看电脑又是支持 miracast 协议,后续发现关闭防火墙即可正常连接。 一、问题现状 最近公司里新换了电视,打算把笔记本电脑投屏到电视上。由于 HDMI 插拔不…

JS基础练习|点击按钮更改背景色

效果图 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><link rel"…

计算机毕业设计 基于Python的摄影平台交流系统的设计与实现 Python+Django+Vue 前后端分离 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

【MySQL】常见的SQL优化方式(一)

目录 1、插入数据 &#xff08;1&#xff09;批量插入 &#xff08;2&#xff09;手动提交事务 &#xff08;3&#xff09;主键顺序插入 2、主键优化 &#xff08;1&#xff09;页分裂 &#xff08;2&#xff09;页合并 3、order by 优化 &#xff08;1&#xff09;排…

新品:新一代全双工音频对讲模块SA618F22-C1

SA618F22-C1是我司一款升级版的无线数字和音频二合一全双工传输模块&#xff0c;支持8路并发高音质通话。用户不仅可以通过串口实现数据的无线传输&#xff0c;还可以通过I2S数字音频或模拟音频接口来传输语音信号。该模块内置高速微控制器、回声消除电路、ESD静电防护、高性能…

四、Drf认证组件

四、Drf认证组件 4.1 快速使用 from django.shortcuts import render,HttpResponse from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.authentication import BaseAuthentication from rest_framework.exception…

【Linux】修改用户名用户家目录

0、锁定旧用户登录 如果旧用户olduser正在运行中是无法操作的&#xff0c;需要先禁用用户登录&#xff0c;然后杀掉所有此用户的进程。 1. 使用 usermod 命令禁用用户 这将锁定用户账户&#xff0c;使其无法登录&#xff1a; sudo usermod -L olduser2. 停止用户的进程 如…

【Python】FeinCMS:轻量级且可扩展的Django内容管理系统

在互联网飞速发展的今天&#xff0c;内容管理系统&#xff08;CMS&#xff09;成为了网站开发中的核心工具&#xff0c;尤其对于需要频繁更新内容的企业和个人站点而言&#xff0c;CMS 提供了极大的便利。市场上有许多不同的 CMS 工具可供选择&#xff0c;其中基于 Django 框架…

CentOS 6文件系统

由冯诺依曼在 1945 年提出的计算机五大组成部分&#xff1a;运算器&#xff0c;控制器&#xff0c;存储器&#xff0c;输入设 备&#xff0c;输出设备。 1. 硬盘结构&#xff1a; &#xff08;1&#xff09;机械硬盘结构&#xff1a; 磁盘拆解图&#xff1a; 扇区&#xff0c;…

【重学 MySQL】四十五、数据库的创建、修改与删除

【重学 MySQL】四十五、数据库的创建、修改与删除 一条数据存储的过程数据输入数据验证数据处理数据存储数据持久化反馈与日志注意事项 标识符命名规则基本规则长度限制保留字与特殊字符命名建议示例 MySQL 中的数据类型创建数据库创建数据库时指定字符集和排序规则 查看数据库…

影刀---实现我的第一个抓取数据的机器人

你们要的csdn自动回复机器人在这里文末哦&#xff01; 这个上传的资源要vip下载&#xff0c;如果想了解影刀这个软件的话可以私聊我&#xff0c;我发你 目录 1.网页对象2.网页元素3.相似元素组4.元素操作设置下拉框复选框滚动条获取元素的信息 5.变量6.数据的表达字符串变量列…

github项目--crawl4ai

github项目--crawl4ai 输出html输出markdown格式输出结构化数据与BeautifulSoup的对比 crawl4ai github上这个项目&#xff0c;没记错的话&#xff0c;昨天涨了3000多的star&#xff0c;今天又新增2000star。一款抓取和解析工具&#xff0c;简单写个demo感受下 这里我们使用cra…

另外知识与网络总结

一、重谈NAT&#xff08;工作在网络层&#xff09; 为什么会有NAT 为了解决ipv4地址太少问题&#xff0c;到了公网的末端就会有运营商路由器来构建私网&#xff0c;在不同私网中私有IP可以重复&#xff0c;这就可以缓解IP地址太少问题&#xff0c;但是这就导致私有IP是重复的…