Linux网络之UDP与TCP协议详解

文章目录

    • UDP协议
      • UDP协议数据报
      • 报头
    • TCP协议
      • 确认应答
        • 缓冲区
      • 超时重传
      • 三次握手
        • 其他问题
      • 四次挥手
      • 滑动窗口
      • 流量控制
      • 拥塞控制

UDP协议

前面我们只是说了UDP协议的用法,但是并没有涉及到UDP协议的原理

毕竟知道冰箱的用法和知道冰箱的原理是两个层级的事情

我们首先知道计算机网络世界是搭建在四层架构上的

而HTTP协议是处于最顶层,是应用层协议,应用层协议的最大特点就是非常多,而且各异

这样多的协议要在网络中传输,必须得给他统一了,并且还能将底层收上来的数据,正确的交付到各个端口中

做到这些的就是传输层协议,主要有两个,就是大名鼎鼎的UDP和TCP

UDP协议数据报

所有的协议都规定了两部分,就是报头和数据本身,在传输层我们一般习惯把这整体称之为数据包

报头

在这里插入图片描述

报头是这样的

相比于IP协议和TCP协议,UDP协议的报头还是十分友好的

UDP的报头大小是固定的,8字节,因此当我们获取到一个UDP数据报之后,取前8个字节,找到UDP数据报的总长度,就能完整的取到整个报文数据

需要注意的是,16位UDP长度指的是UDP数据报的总长度,包含报头和数据部分,因此UDP的最大数据大小就是2^16-1,大小就是64KB

UDP的传输过程是不可靠的,无连接的,面向数据报,在我们之前介绍的时候有说过,他的主要应用场景其实就是直播了

TCP协议

在这里插入图片描述

TCP报头就比UDP丑多了,而且他还是不定长的,其中有一个交4位首部长度,是代表了TCP报头的大小,范围是20到60字节

其他的部分都是用来确保TCP的可靠性和效率所用到的

TCP如此知名,就是因为他的可靠性,那么他做了哪些事情保证他的可靠呢

确认应答

我们发出了一条信息,怎么确定对方是否看到了呢,在Line或者抖音中,会回显对方是否已读,这其实就是一个确认应答机制

为了保证可靠性,TCP协议规定了ACK机制,也就是确认应答机制

机智的朋友肯定发现上面的标志位中有一个ACK,就是用于这个事情的

在这里插入图片描述

但是如果服务器和客户机一人一条发送,服务器每发送一个数据,都要等客户端回答收到之后再发送,这样固然是可靠了,但是效率却也大大降低了

于是就有了下面的想法,一次发送10条数据,分别标记上1到10

客户端收到1回复2,表明自己的1收到了,下一个想要2,因此客户端在一次收到1到10之后会分别回复2到11

但是计算机网络纷繁复杂,数据报可不一定是按顺序到达的,这就麻烦了,我怎么知道我缺哪个呢,而且每一个都进行回复也太二了

然后我们再想,一次发送了1到10,但是接收到了,1到5,8到10,6和7都丢了

那我们只回复5,标识5以前的都正确收到了,接下来想要6

这样就好很多了

缓冲区

除此之外,TCP的协议是全双工的,用一个端口就可以执行发送和接收两个操作,而且系统调用recv和read也不是从网卡中读取数据到内存,而是从缓冲区里拿上来的,send和write其实也算写入到缓冲区的,不是直接写到网卡里

在这里插入图片描述

那这个缓冲区写满了怎么办,怎么知道,发送缓冲区没数据了怎么办

这其实就是那16位的窗口做的事情,他分别对应了缓冲区的大小,每一次收发其实都会把缓冲区的状态写在里面,当缓冲区都快满了,写方就知道不要再往里面传了

超时重传

当数据在传输过程中丢了怎么办,迟迟没有收到ACK就说明发送失败了

当服务器等了一段时间也没有收到客户机发来的ACK,就说明数据可能是丢了,无论是数据丢了,还是ACK丢了,都会触发超时重传

这时候TCP协议就会要求服务器重新传一次数据

一般来说这个一段时间其实是动态的,各家操作系统都是这样

逻辑是这样的500ms是一个单位,每次乘2,当次数有几次之后,就说明对方主机可能出毛病了,有可能是被拔网线了,这时候就不会重传了

其实TCP协议他可靠吗,确实,在他能做到的范围内确实可靠,但是如果被拔网线就没办法了(不可抗力)

三次握手

我们说TCP协议是面向连接的,这个连接是怎么建立的呢

就是通过三次握手,在TCP报头中的SYN标记就是标识我要跟你交朋友

过程是这样的

客户端发起请求,说,我要跟你做朋友(发送一个包含SYN标记的报文)

服务端收到之后,说,我收到了你的消息,我也要跟你做朋友(发送了一个ACK和SYN标记都有的报文)

客户端收到之后,说,好!(发送一个ACK标记的报文)

在这里插入图片描述

这三次数据传递其实就建立了一个TCP连接,但是建立连接的时候,是在哪一个动作呢

其实是在客户端最后一次发送之后,客户端就认为连接建立好了,而服务器接收到了之后,服务器就认为连接建立好了

接下来客户端就可以发送请求了,疯狂星期四,V我50

需要注意的是,服务器可不是一次只跟一个客户机聊天,说不定有成千上万的客户端来请求,而操作系统的管理策略其实就是先描述再组织,将这些连接管理起来

其他问题

有一个经典的面试问题为什么是三次握手,其他次数行不行

  1. 偶数次

这里需要知道一点,当我发出一条消息的时候,我是不知道这条消息能不能传达到的,但是可以确定的是,我之前的消息一定传到了,并且我也可以收到对方的消息

而在这个过程中,永远是客户机给服务器发送请求,如果是奇数次,说明最后一个确认是服务器发给客户端的,说明之前的信息都没问题了,为什么还要继续确认呢?我直接发我的请求不好吗

而且如果使用偶数次握手,是服务器先确认建立的连接,客户端就可以一直发送SYN报文,一直不建立连接,服务器需要面对的可就多了,维护连接过多可是会挂掉的

  1. 其他奇数次呢

1次就不说了太蠢了,5次以上那不就是浪费资源了

3次就能干好的事情为什么要5次7次,那不是脱裤子放屁吗

四次挥手

有资源的申请就要有资源的释放,有链接的申请就要有链接的释放

在TCP报头中有一个叫做FIN,其实就是final,标志着我要离开我的朋友了

链接的释放可以说客户端也可以是服务器,这里我为了方便表示说是客户端,表示我要的资源已经拿到了,要拜拜了

客户端发出请求,要拜拜了(发送一个带有FIN的报文)

服务器收到了,我知道了(原地等待一会儿)(返回一个ACK,表示我知道了,然后等待一个CLOSE_WAIT的时间,给客户机反悔的机会,看客户机还有没有别的话说)

这段时间服务器什么也没有等到,服务器说,这是我跟你说的最后一句话,以后再也没有了(假),拜拜(发送了一个LAST_ACK,表示最后一个ACK报文,并且附带了FIN标志,表示结束)

当客户端收到之后,其实连接就已经断开了,并且会维持一段时间TIME_WAIT,不让客户端对同一个端口发送请求,咱不能抓着一只羊薅羊毛吧

在这里插入图片描述

滑动窗口

如果服务器发送了1到20号数据,但是客户端收到的是1和3到20,只发了一个2的请求,服务器看到之后觉得他只收到了1,于是把2到20又发了一遍,这样的效率又变得不行了

于是就有了滑动窗口,我们把发送缓冲区和接收缓冲区想象成数组,儿窗口限制的其实是左右的下标,我们每次只确认窗口中的数据即可

在这里插入图片描述

在这里插入图片描述

需要注意的是,在滑动窗口中的每一个部分其实都是需要确认ACK的,这是和之前不一样的

流量控制

流量控制其实用到的原理就是上面的滑动窗口,我们需要控制发送数据的速度,不能让接收端的缓冲区过满,不然就是无用功了

这时候TCP报头中的显示缓冲区情况就起到作用了

拥塞控制

拥塞控制与流量控制不同,他是为了防止网络状况不好产生的原因,比如说路由器出问题,网络拥堵送不出去

TCP的解决方案是慢启动,他指的是一开始的发送的数据很少,但是是指数级别的增长

当这个增长达到一定阈值之后,就是用线性增长了,如果遇到了重传,就会减半

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/54603.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

怎么用gitee做一个图片仓库,在md文档中用这个图片网络地址,然后显示图片

痛因:我为什么要这样做,呃,我一开始图片都是存本地地址的,放在和这个md文档同级的assets文件夹下面,这样子确实当时很方便,复制粘贴什么也不用管,但是想把这个文档分享给别的人的时候&#xff0…

美信监控易的优势:长期稳定运行

美信监控易作为一款运维产品,其显著的优势在于能够长期稳定运行。在IT运维领域,系统的稳定性是至关重要的,它直接关系到企业的业务连续性和客户满意度。美信监控易通过其自研的数据库和先进的监测技术,确保了系统的高可用性&#…

HarmonyOS鸿蒙开发实战(5.0)悬浮窗拖拽和吸附动画实践

鸿蒙HarmonyOS NEXT开发实战往期文章必看(持续更新......) HarmonyOS NEXT应用开发性能实践总结 HarmonyOS NEXT应用开发案例实践总结合集 最新版!“非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线!(从零基础入门…

OpenHarmony(鸿蒙南向开发)——小型系统内核(LiteOS-A)【Perf调测】

往期知识点记录: 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总 鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~ 持续更新中…… 基本概念 Perf为性能分析工具,依赖PMU(Per…

Qt --- 常用控件的介绍 --- 其他控件

一、QPushButton QWidget中设计到的各种属性/函数/使用方法,针对接下来要介绍的Qt的各种控件都是有效的。 使用QPushButton表示一个按钮,这也是当前我们最熟悉的一个控件了。这个类继承了QAbstractButton,这个类是一个抽象类,是…

C++自动驾驶面试核心问题整理

应用开发 概述:比较基础,没啥壁垒,主要有linux开发经验即可 问题:基础八股,如计算机网络、操作系统、c11等基础三件套;中等难度算法题1-2道。 中间件开发(性能优化) 概述&am…

Set 和 Map 的模拟实现

1、引言 在数据结构与算法的学习与实践中,关联容器(associative containers)是不可忽视的重要工具。作为高效管理数据的一类容器,C 标准库中的 set 和 map 在现代软件开发中扮演着关键角色。这两个容器通过平衡二叉搜索树&#x…

【通讯协议】S32K142芯片——LIN通信的学习和配置

文章目录 前言1.LIN是什么?2. LIN连接结构及节点构成3. 帧的组成3.1 帧头3.1.1 同步间隔场(Break)3.1.2 同步场(Synch)3.1.3 标识符场(PID) 3.2 帧响应3.2.1 数据场3.2.2 校验和场 3. 代码配置总…

【图灵完备 Turing Complete】游戏经验攻略分享 Part.6 处理器架构2 函数

新的架构来了,本游戏的最后一个攻略分享,最后汇编部分无非是对于操作码的熟练,硬件没有问题,那么也就无关痛痒了。 汇编实现,两数相或和两数相与非一起相与即可。 八位异或器,整就完事了。 有手就行。 利…

干货满满:嵌入式电阻的重要作用全知晓

在嵌入式开发中,有一个小小的元件,它看似不起眼,却在电路中扮演着极其重要的角色。它就是——电阻。很多初学者认为电阻只是用来“分压降流”,但其实,电阻的作用远比我们想象的要复杂和关键。今天,我们就来…

LeetCode 2374.边积分最高的节点:模拟

【LetMeFly】2374.边积分最高的节点:模拟 力扣题目链接:https://leetcode.cn/problems/node-with-highest-edge-score/ 给你一个有向图,图中有 n 个节点,节点编号从 0 到 n - 1 ,其中每个节点都 恰有一条 出边。 图…

思科安全网络解决方案

《网安面试指南》http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247484339&idx1&sn356300f169de74e7a778b04bfbbbd0ab&chksmc0e47aeff793f3f9a5f7abcfa57695e8944e52bca2de2c7a3eb1aecb3c1e6b9cb6abe509d51f&scene21#wechat_redirect 《Java代码审…

【门牌制作 / A】

题目 代码 #include <bits/stdc.h> using namespace std; int main() {int cnt 0;for (int i 1; i < 2020; i){string s;s to_string(i);cnt count(s.begin(), s.end(), 2);}cout << cnt; }

【C++篇】走进C++标准模板库:STL的奥秘与编程效率提升之道

文章目录 C STL 初探&#xff1a;打开标准模板库的大门前言第一章: 什么是STL&#xff1f;1.1 标准模板库简介1.2 STL的历史背景1.3 STL的组成 第二章: STL的版本与演进2.1 不同的STL版本2.2 STL的影响与重要性 第三章: 为什么学习 STL&#xff1f;3.1 从手动编写到标准化解决方…

【论文速看】DL最新进展20240923-长尾综述、人脸防伪、图像分割

目录 【长尾学习】【人脸防伪】【图像分割】 【长尾学习】 [2024综述] A Systematic Review on Long-Tailed Learning 论文链接&#xff1a;https://arxiv.org/pdf/2408.00483 长尾数据是一种特殊类型的多类不平衡数据&#xff0c;其中包含大量少数/尾部类别&#xff0c;这些类…

tomcat服务搭建部署ujcms网站

tomcat服务搭建部署ujcms网站 关闭selinux和防火墙 setenforce 0 && systemctl stop firewalld安装java环境 #卸载原有java8环境 yum remove java*#上传java软件包&#xff0c;并解压缩 tar -xf openjdk-11.0.1_linux-x64_bin.tar.gz && mv jdk-11.0.1 jdk11…

TaskRes: Task Residual for Tuning Vision-Language Models

文章汇总 当前VLMs微调中存在的问题 提示微调的问题 在提示调优中缺乏对先验知识保存的保证(me&#xff1a;即提示微调有可能会丢失预训练模型中的通用知识)。虽然预先训练的文本分支模块(如文本编码器和投影)的权重在提示调优范式中被冻结&#xff0c;但原始的良好学习的分类…

BUUCTF-MISC-荷兰宽带数据泄露

下载附件得到一个二进制文件 通过题目猜测这是一段路由器备份日志&#xff0c;可以使用RouterPassView打开 链接: https://pan.baidu.com/s/1tY5Sdl8GcI5dKQdhPXj5yA?pwdhi9k 下载链接http://pan.baidu.com/s/1tY5Sdl8GcI5dKQdhPXj5yA?pwdhi9k注意&#xff0c;这个软件会报毒…

struts2 S2-057远程执行代码漏洞 靶场攻略

环境 vulhub靶场 /struts2/s2-057 漏洞简介 漏洞产⽣于⽹站配置XML时如果没有设置namespace的值&#xff0c;并且上层动作配置中并没有设置 或使⽤通配符namespace时&#xff0c;可能会导致远程代码执⾏漏洞的发⽣。同样也可能因为url标签没 有设置value和action的值&…

react + antDesign封装图片预览组件(支持多张图片)

需求场景&#xff1a;最近在开发后台系统时经常遇到图片预览问题&#xff0c;如果一个一个的引用antDesign的图片预览组件就有点繁琐了&#xff0c;于是在antDesign图片预览组件的基础上二次封装了一下&#xff0c;避免重复无用代码的出现 效果 公共预览组件代码 import React…