redis群集的三种模式

目录

一、redis群集有三种模式

二、redis主从复制

2.1 概念

2.2 主从复制的作用

2.3 主从复制流程

三、搭建redis主从复制

四、redis哨兵模式

4.1 概念

4.2 哨兵模式原理:

4.3 哨兵模式的作用:

4.4 故障转移机制:

4.5 主节点的选举:

五、搭建redis哨兵

5.1 搭建

5.2 故障模拟

六、redis群集模式

6.1 概念

6.2 集群的作用

6.3 Redis集群的数据分片:

6.4 Redis集群的主从复制模型

七、搭建redis群集模式


一、redis群集有三种模式

redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster,下面会讲解一下三种模式的工作方式,以及如何搭建cluster群集

  • 主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。
    • 缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
  • 哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。
    • 缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。
  • 集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

二、redis主从复制

2.1 概念

  • 主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器        
  • 前者称为主节点(Master),后者称为从节点(Slave);
  • 数据的复制是单向的,只能由主节点到从节点
  • 默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点

2.2 主从复制的作用

  • 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
  • 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
  • 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
  • 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

2.3 主从复制流程

  • 若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接
  • 无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中
  • 后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接
  • Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常

三、搭建redis主从复制

环境准备

Master节点: 192.168.67.12
Slave1节点: 192.168.67.13
Slave2节点: 192.168.67.14hostnamectl set-hostname master
hostnamectl set-hostname slave1
hostnamectl set-hostname slave2systemctl stop firewalld
setenforce 0

安装redis

#主从都装
yum -y install gcc gcc-c++ make#从服务器配置的版本高一点可以向下兼容
#从装5.0.9版本;主装5.0.7版本
wget -p /opt http://download.redis.io/releases/redis-5.0.9.tar.gz#解压、编译redis安装包
tar zxvf redis-5.0.7.tar.gz -C /opt/
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis installcd /opt/redis-5.0.7/utils
./install_server.sh
#一直回车到配置redis可执行路径,[]后添加/usr/local/redis/bin/redis-server#完成后添加软连接
ln -s /usr/local/redis/bin/* /usr/local/bin/

修改Redis 配置文件(master节点操作)

#70行,修改监听地址为0.0.0.0
bind 0.0.0.0
#137行,开启守护进程
daemonize yes
#172行,指定日志文件目录
logfile /var/log/redis_6379.log		
#264行,指定工作目录
dir /var/lib/redis/6379
#700行,开启AOF持久化功能
appendonly yes

注:只需修改监听地址
和开启AOF持久化,其他按默认的即可

重启redis

/etc/init.d/redis_6379 restart

修改Redis 配置文件(slave节点操作)

vim /etc/redis/6379.conf
#70行,修改监听地址为0.0.0.0
bind 0.0.0.0
#137行,开启守护进程
daemonize yes
#172行,指定日志文件目录
logfile /var/log/redis_6379.log		
#264行,指定工作目录
dir /var/lib/redis/6379
#288行,指定要同步的Master节点IP和端口
replicaof 192.168.10.23 6379
#700行,开启AOF持久化功能
appendonly yes

注:

修改监听地址
指定同步端口
开启AOF持久化

重启redis

/etc/init.d/redis_6379 restart

验证主从效果

在master节点上看日志

tail -f /var/log/redis_6379.log

 在主redis库中添加一条数据

通过从redis查看是否同步

查看主redis的日志

在master节点上验证从节点

[root@master ~]# redis-cli info replication
# Replication
role:master
#表示有两个从库
connected_slaves:2
slave0:ip=192.168.67.13,port=6379,state=online,offset=3346,lag=0
slave1:ip=192.168.67.14,port=6379,state=online,offset=3346,lag=0
master_replid:bf55885a05abd47719025b6276996e40e9667fb4
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:3346
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:3346

四、redis哨兵模式

4.1 概念

  • 主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制
  • 哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

4.2 哨兵模式原理:

哨兵(sentinel):是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的 Master并将所有slave连接到新的 Master。所以整个运行哨兵的集群的数量不得少于3个节点。

4.3 哨兵模式的作用:

  • 监控:哨兵会不断地检查主节点和从节点是否运作正常
  • 自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点
  • 通知(提醒):哨兵可以将故障转移的结果发送给客户端

哨兵结构由两部分组成,哨兵节点和数据节点:

  • 哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据
  • 数据节点:主节点和从节点都是数据节点

4.4 故障转移机制:

1、由哨兵节点定期监控发现主节点是否出现了故障

每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了

2、当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3、由leader哨兵节点执行故障转移,过程如下:

  • 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
  • 若原主节点恢复也变成从节点,并指向新的主节点;
  • 通知客户端主节点已经更换。

特别注意:

  • 客观下线是主节点才有的概念
  • 如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作

 

4.5 主节点的选举:

  • 过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
  • 选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
  • 选择复制偏移量最大,也就是复制最完整的从节点

补充:哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

五、搭建redis哨兵

5.1 搭建

环境准备

Master节点:192.168.67.12
Slave1节点:192.168.67.13
Slave2节点:192.168.67.14systemctl stop firewalld
setenforce 0

修改 Redis 哨兵模式的配置文件(所有节点操作)

vim /opt/redis-5.0.7/sentinel.conf#17行,关闭保护模式
protected-mode no
#21行,Redis哨兵默认的监听端口
port 26379
#26行,指定sentinel为后台启动
daemonize yes
#36行,指定日志存放路径
logfile "/var/log/sentinel.log"
#65行,指定数据库存放路径
dir "/var/lib/redis/6379"
#84行,修改 指定该哨兵节点监控
sentinel monitor mymaster 192.168.67.12 6379 2
# 192.168.67.12:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:表示至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移#113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel down-after-milliseconds mymaster 30000
#146行,故障节点的最大超时时间为180000(180秒)
sentinel failover-timeout mymaster 180000

启动哨兵模式

先启动master,再启动slave

cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &

查看哨兵信息

redis-cli -p 26379 info Sentinel
[root@master ~]# redis-cli -p 26379 info Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.67.12:6379,slaves=2,sentinels=3

5.2 故障模拟

查看redis-server 进程号

[root@master ~]# ps -ef | grep redis
root      19640  14397  0 01:11 pts/2    00:00:00 tail -f /var/log/redis_6379.log
root      19715      1  0 01:19 ?        00:00:07 /usr/local/redis/bin/redis-server 0.0.0.0:6379
root      20334  20239  0 02:00 pts/1    00:00:00 tail -f /var/log/redis_6379.log
root      20898      1  0 02:56 ?        00:00:00 redis-sentinel *:26379 [sentinel]
root      20992  20283  0 03:03 pts/4    00:00:00 grep --color=auto redis
[root@master ~]# 

杀死master节点上redis-server的进程号

kill杀掉 Master节点上redis-server的进程号
[root@master ~]# kill -9 19715

在原master上查看日志

#查看哨兵的日志
tail -f /var/log/sentinel.log

主redis变为67.14,实现故障自动切换

六、redis群集模式

6.1 概念

  • 集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案
  • 集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制

6.2 集群的作用

  • (1)数据分区:数据分区(或称数据分片)是集群最核心的功能。
    • 集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力
    • Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。
  • (2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

6.3 Redis集群的数据分片:

Redis集群引入了哈希槽的概念

  • Redis集群有16384个哈希槽(编号0-16383)
  • 集群的每个节点负责一部分哈希槽
  • 每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

以3个节点组成的集群为例:

节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

6.4 Redis集群的主从复制模型

  • 集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用

  • 为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用

七、搭建redis群集模式

注:

  • redis的集群一般需要6个节点,3主3从;方便起见,这里所有节点在同一台服务器上模拟:
  • 以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006
cd /etc/redis/
mkdir -p redis-cluster/redis600{1..6}[root@master redis]# vim test.sh
[root@master redis]# cat test.sh 
for i in {1..6}
do
cp /opt/redis-5.0.7/redis.conf /etc/redis/redis-cluster/redis600$i
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis600$i
done
[root@master redis]# bash test.sh

开启群集功能        

其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样

cd /etc/redis/redis-cluster/redis6001
vim redis.conf
#69行,注释掉bind 项,默认监听所有网卡
#bind 127.0.0.1
#88行,修改,关闭保护模式
protected-mode no
#92行,修改,redis监听端口,
port 6001
#136行,开启守护进程,以独立进程启动
daemonize yes
#700行,修改,开启AOF持久化
appendonly yes
#832行,取消注释,开启群集功能
cluster-enabled yes
#840行,取消注释,群集名称文件设置
cluster-config-file nodes-6001.conf
#846行,取消注释群集超时时间设置
cluster-node-timeout 15000

启动redis节点

分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点

#可以一个个去执行
cd /etc/redis/redis-cluster/redis6001
redis-server redis.conf#也可以设置一个脚本来执行
[root@master redis]# pwd
/etc/redis
[root@master redis]# vim test2.sh
[root@master redis]# cat test2.sh 
for d in {1..6}
do
cd /etc/redis/redis-cluster/redis600$d
redis-server redis.conf
done[root@master redis]# bash test2.shps -ef | grep redis

启动集群

redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1

注:

  • 六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。
  • 下面交互的时候 需要输入 yes 才可以创建
  • --replicas 1 表示每个主节点有1个从节点

测试群集

[root@master redis]# redis-cli -p 6001 -c
#加-c参数,节点之间(的数据)就可以互相跳转
127.0.0.1:6001> cluster slots
#查看节点的哈希槽编号范围
#哈希槽编号范围
1) 1) (integer) 109232) (integer) 16383#主节点IP和端口号3) 1) "127.0.0.1"2) (integer) 60033) "4703f029b71f03a8102e7c3af763d4f036728241"#从节点IP和端口号4) 1) "127.0.0.1"2) (integer) 60043) "84897626965c47eb88e9a96cca1f1ba8fdac492d"
2) 1) (integer) 02) (integer) 54603) 1) "127.0.0.1"2) (integer) 60013) "7e6c5a62e4c353905371801d2e5c2315c42844d6"4) 1) "127.0.0.1"2) (integer) 60053) "e2c0da8fb2c1d07eaed9959eae3bc0f31427a7f1"
3) 1) (integer) 54612) (integer) 109223) 1) "127.0.0.1"2) (integer) 60023) "61daf8ebc26f503d43f499fd098cac30c2f49f84"4) 1) "127.0.0.1"2) (integer) 60063) "2520316633767aae95bcbfdb298a675bef4571f7"
127.0.0.1:6001> 
[root@master redis]# redis-cli -p 6001 -c
127.0.0.1:6001> set name yiyi
-> Redirected to slot [5798] located at 127.0.0.1:6002
OK
# -c 跳转
127.0.0.1:6002> get name
"yiyi"
#查看name键的槽编号
127.0.0.1:6002> CLUSTER KEYSLOT name
(integer) 5798
127.0.0.1:6002> quit
#对应的slave节点也有这条数据,但是别的节点没有
[root@master redis]# redis-cli -p 6006 -c
127.0.0.1:6006> keys *
1) "name"
127.0.0.1:6006> get name
-> Redirected to slot [5798] located at 127.0.0.1:6002
"yiyi"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/53824.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【计算机网络】电路交换、报文交换和分组交换——三种交换方式性能分析以及计算机网络的分类

【计算机网络】电路交换、电报交换、分组交换 目录 【计算机网络】电路交换、电报交换、分组交换1. 电路交换2. 电报交换3. 分组交换4. 基于分组交换~“虚电路交换”技术 【计算机网络】电路交换、报文交换和分组交换——三种交换方式性能分析电路交换性能分析报文交换性能分析…

C/C++:优选算法

一、双指针 1.1移动零 链接:283. 移动零 - 力扣(LeetCode) 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。请注意 ,必须在不复制数组的情况下原地对数组进行操…

[001-03-007].第07节:Redis中的事务

我的后端学习大纲 我的Redis学习大纲 1、Redis事务是什么: 1.可以一次执行多个命令,本质是一组命令的集合。一个事务中的所有命令都会序列化, 按顺序地串行化执行而不会被其他命令插入,不许加塞2.一个队列中,一次性、…

PLSQL-将一份excel数据导入到一张物理表(Oracle)

–>> 很简单~ 平时用惯了DBeaver,突然要用PLSQL Developer,确实很生疏。 –>> 我的场景,将一份.csv文件数据手动导入到Oracle下的一张物理表中去。 研究了半天,看网上说的可以用:Tools → ODBC Importer &…

WPF 手撸插件 八 依赖注入

本文内容大量参考了:https://www.cnblogs.com/Chary/p/11351457.html 而且这篇文章总结的非常好。 1、注意想使用Autofac,Autofac是一个轻量级、‌高性能的依赖注入(‌DI)‌框架,‌主要用于.NET应用程序的组件解耦和…

被低估的SQL

SQL是现代数据库管理系统中不可或缺的一部分。尽管它的使用已十分普遍,但在数据处理领域,SQL的某些功能和潜力仍然被许多人低估。接下来,小编将与您一起,探讨SQL的一些被忽视的特性,揭示它在数据管理中的真正实力。 1.…

红海云 × 滨湖国控集团 | 数智引领集团型国企人力资源数字化变革

合肥滨湖国有资本运营控股集团有限公司(以下简称“滨湖国控集团”)为合肥市包河区区属一级国企。滨湖国控集团作为安徽省市辖行政区中首个获得AA主体信用评级的区属国企,紧扣“三区”定位,聚焦“三位”追求 ,积极构筑金…

Python OpenCV精讲系列 - 高级图像处理技术(五)

💖💖⚡️⚡️专栏:Python OpenCV精讲⚡️⚡️💖💖 本专栏聚焦于Python结合OpenCV库进行计算机视觉开发的专业教程。通过系统化的课程设计,从基础概念入手,逐步深入到图像处理、特征检测、物体识…

使用 Elastic 和 LM Studio 的 Herding Llama 3.1

作者:来自 Elastic Charles Davison, Julian Khalifa 最新的 LM Studio 0.3 更新使 Elastic 的安全 AI Assistant 能够更轻松、更快速地与 LM Studio 托管模型一起运行。在这篇博客中,Elastic 和 LM Studio 团队将向你展示如何在几分钟内开始使用。如果你…

【UE5 C++课程系列笔记】02——创建C++类的三种方式

目录 一、从UE编辑器中创建 引用头文件报错的两种解决方式 (1)方式1 (2)方式2 二、在文件夹中直接创建 三、在Visual Studio中创建 一、从UE编辑器中创建 在UE编辑器中选择“Tools-》New C Class” 这里新建的类的父类选择…

解锁阿尔茨海默病(AD)靶点密码,开启靶向治疗新篇章

前 言: 阿尔茨海默病(AD)是一种严重的神经退行性疾病,多发于高龄人群,主要表现为记忆、思维、分析判断、视空间辨认、情绪等障碍。从实验室到临床应用的过程充满挑战。阿尔茨海默症新型疗法的开发主要聚焦于靶向Aβ、…

Vue3.0项目实战(三)——大事件管理系统首页 layout 架子与文章分类的实现

目录 1. 首页 layout 架子 [element-plus 菜单] 1.1 基本架子拆解 2. 登录访问拦截 2.1 需求 2.2 vue3 和 vue2 中的 Vue-Router 区别 3. 用户基本信息获取&渲染 4. 退出功能 [element-plus 确认框] 5. 文章分类页面 - [element-plus 表格] 5.1 基本架子 - PageCo…

专业版PyCharm使用plt.show()显示图像时,如何不显示在右侧工具栏中,而是直接弹出来

解决方案 File -> Settings -> Python Plots -> 取消勾选 Show plots in tool window 示例 默认勾选 Show plots in tool window 的显示效果: 取消勾选 Show plots in tool window 的显示效果:

伙房食堂电气安全新挑战:油烟潮湿环境下,如何筑起电气火灾“防火墙”?

近几年,随着我国经济的飞速发展,食堂餐饮也经历了一场变革,越来越多的电器走进了伙房食堂中,实现了电气化,为人们提供了高效便利的饮食服务,但同时也增加了火灾负荷。目前我国非常严重的电气火灾危害&#…

使用 Parallel 类进行多线程编码(下)

2.Parallel.ForEach() 的使用 从 ForEach() 这个名字可以看出该方法是用来遍历泛型集合的,新建一个 ASP.NET Core Web应用的项目,如下: 在 Index.cshtml.cs 文件中增加一个 UserInfo.cs 的类,代码如下: public class U…

组合逻辑电路的分析

目录 组合逻辑电路的分析 分析思路 基本步骤 例题1 例题2 组合逻辑电路的分析 分析思路 基本步骤 例题1 将每个门的输出命名。 写出逻辑函数式。 列真值表。 ABC全一致输出为1。 例题2 观察发现这三个结构是一样的。 逐级写出逻辑函数式: 发现这其实就是异或…

基于云端的跨平台个人信息管理系统

博主介绍:专注于Java .net php phython 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找不到哟 我的博客空间发布了1000毕设题目 方便大家学习使用 感兴趣的可以…

无线麦克风哪款好用,手机领夹麦克风哪个牌子好,麦克风推荐

随着短视频与直播行业的蓬勃发展,无线领夹麦克风市场迎来了前所未有的繁荣。品牌如罗德、大疆、西圣等麦克风品牌凭借卓越的技术实力与品牌影响力占据了市场的主导地位,其中西圣更是凭借其高性价比和用户口碑,稳居行业口碑品牌前列。但在这光…

Chainlit集成Langchain并使用通义千问实现文生图网页应用

前言 本文教程如何使用通义千问的大模型服务平台的接口,实现图片生成的网页应用,主要用到的技术服务有,chainlit 、 langchain、 flux。合利用了大模型的工具选择调用能力。实现聊天对话生成图片的网页应用。 阿里云 大模型服务平台百炼 API…

最新融合多模态的理解和生成的大一统transform架构,show-o模型部署

Show-o是由字节跳动和新加坡国立大学Show Lab共同研发的一个多模态大模型,统一了多模态理解和生成。 Show-o的创新之处在于它将自回归和离散扩散建模相结合,以适应不同和混合模态的输入和输出。 Show-o模型的架构基于预训练的大型语言模型(…