目标检测-YOLOv4

YOLOv4介绍

YOLOv4 是 YOLO 系列的第四个版本,继承了 YOLOv3 的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比 YOLOv3,YOLOv4 在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。

相比 YOLOv3 的改进与优势

  1. 改进的 Backbone (CSPDarknet-53)
    YOLOv4 使用了 CSPDarknet-53 作为其主干网络 (Backbone)。CSPNet(Cross Stage Partial Network)通过部分特征的逐层传递减少了冗余梯度信息,提高了推理速度和精度。此外,它能够有效降低内存占用,使得网络更加轻量化。

  2. PANet (Path Aggregation Network)
    YOLOv4 引入了 PANet 来替代 YOLOv3 中的 FPN (Feature Pyramid Networks)。PANet 更有效地聚合不同尺度的特征,增强了特征表达能力,尤其对小目标检测性能提升明显。

  3. Mish 激活函数
    YOLOv4 使用 Mish 激活函数代替 YOLOv3 中的 Leaky ReLU。Mish 激活函数可以提供更平滑的梯度传递,提升了模型的学习能力和泛化性。

  4. 自适应输入分布 (Mosaic Data Augmentation)
    在数据增强方面,YOLOv4 引入了 Mosaic Data Augmentation,这种技术通过将四张不同的图片拼接在一起进行训练,使得模型能够更好地适应不同尺寸、位置和背景的物体,从而提高泛化能力。

  5. CIoU Loss
    YOLOv4 使用了 CIoU Loss(Complete IoU Loss),相比 YOLOv3 使用的 IoU Loss,CIoU 更好地考虑了边界框的重叠度、中心点距离以及长宽比,使得目标定位更加精确。

  6. DropBlock Regularization
    为了防止过拟合,YOLOv4 引入了 DropBlock 正则化方法,这是一种空间正则化技术,可以在卷积层中随机去除一部分神经元,以增强模型的泛化能力。

  7. 自适应权重计算 (SAM, Self-Adversarial Training)
    SAM (Spatial Attention Module) 提升了网络的注意力机制,使模型更好地聚焦于重要的特征部分。此外,YOLOv4 还引入了 Self-Adversarial Training 作为一种新型的自对抗训练方法,增强了模型的鲁棒性。

核心代码展示

以下是 YOLOv4 的核心部分代码,包括主干网络 CSPDarknet-53 和 PANet 构建模块。

import torch
import torch.nn as nn# 1. Mish 激活函数
class Mish(nn.Module):def forward(self, x):return x * torch.tanh(nn.functional.softplus(x))# 2. 卷积块,包含卷积、BN 和 Mish 激活函数
class ConvBlock(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride, padding):super(ConvBlock, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False)self.bn = nn.BatchNorm2d(out_channels)self.activation = Mish()def forward(self, x):return self.activation(self.bn(self.conv(x)))# 3. CSP 模块
class CSPBlock(nn.Module):def __init__(self, in_channels, out_channels, num_blocks):super(CSPBlock, self).__init__()half_channels = out_channels // 2self.conv1 = ConvBlock(in_channels, half_channels, 1, 1, 0)self.conv2 = ConvBlock(in_channels, half_channels, 1, 1, 0)self.res_blocks = nn.Sequential(*[ResidualBlock(half_channels) for _ in range(num_blocks)])self.conv3 = ConvBlock(half_channels * 2, out_channels, 1, 1, 0)def forward(self, x):x1 = self.conv1(x)x2 = self.conv2(x)x1 = self.res_blocks(x1)return self.conv3(torch.cat([x1, x2], dim=1))# 4. PANet 下采样模块
class PANetDownsample(nn.Module):def __init__(self, in_channels, out_channels):super(PANetDownsample, self).__init__()self.conv = ConvBlock(in_channels, out_channels, 3, 2, 1)  # 步长为 2,进行下采样def forward(self, x):return self.conv(x)# 5. YOLOv4 Backbone: CSPDarknet53
class CSPDarknet53(nn.Module):def __init__(self):super(CSPDarknet53, self).__init__()self.conv1 = ConvBlock(3, 32, 3, 1, 1)self.conv2 = ConvBlock(32, 64, 3, 2, 1)self.csp_block1 = CSPBlock(64, 128, 2)self.csp_block2 = CSPBlock(128, 256, 8)self.csp_block3 = CSPBlock(256, 512, 8)self.csp_block4 = CSPBlock(512, 1024, 4)def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.csp_block1(x)x_52x52 = self.csp_block2(x)x_26x26 = self.csp_block3(x_52x52)x_13x13 = self.csp_block4(x_26x26)return x_52x52, x_26x26, x_13x13# 6. YOLOv4 Head: PANet
class PANet(nn.Module):def __init__(self, num_classes):super(PANet, self).__init__()self.num_classes = num_classes# 下采样和卷积操作self.downsample_52x52 = PANetDownsample(256, 512)self.downsample_26x26 = PANetDownsample(512, 1024)# 最终输出预测层 (每个尺度的 YOLO head)self.yolo_head_52x52 = YOLOHead(256, num_classes)self.yolo_head_26x26 = YOLOHead(512, num_classes)self.yolo_head_13x13 = YOLOHead(1024, num_classes)def forward(self, x_52x52, x_26x26, x_13x13):x_26x26 = self.downsample_52x52(x_52x52) + x_26x26x_13x13 = self.downsample_26x26(x_26x26) + x_13x13yolo_output_52x52 = self.yolo_head_52x52(x_52x52)yolo_output_26x26 = self.yolo_head_26x26(x_26x26)yolo_output_13x13 = self.yolo_head_13x13(x_13x13)return [yolo_output_52x52, yolo_output_26x26, yolo_output_13x13]# 7. YOLOv4 完整模型
class YOLOv4(nn.Module):def __init__(self, num_classes):super(YOLOv4, self).__init__()self.backbone = CSPDarknet53()self.panet = PANet(num_classes)def forward(self, x):x_52x52, x_26x26, x_13x13 = self.backbone(x)return self.panet(x_52x52, x_26x26, x_13x13)# YOLO Head 定义
class YOLOHead(nn.Module):def __init__(self, in_channels, num_classes):super(YOLOHead, self).__init__()self.conv = ConvBlock(in_channels, in_channels * 2, 3, 1, 1)self.pred = nn.Conv2d(in_channels * 2, 3 * (num_classes + 5), 1, 1, 0)def forward(self, x):x = self.conv(x)return self.pred(x)

代码解释

  1. Mish 激活函数
    Mish 激活函数取代了 YOLOv3 中的 Leaky ReLU,它的平滑梯度使得模型训练更加稳定。

  2. CSPDarknet-53
    YOLOv4 使用 CSPDarknet-53 作为主干网络,它引入

了 CSPNet 架构,在每个残差块中进行特征分割和融合,降低了内存消耗并提升了特征提取的效率。

  1. PANet
    PANet 的引入通过强化不同尺度的特征聚合,提升了小目标的检测效果。它替代了 YOLOv3 中的 FPN。

  2. YOLOHead
    YOLOv4 中的检测头与 YOLOv3 类似,但在每个尺度上进行了更多的特征卷积操作,以提高预测的准确度。

结论

YOLOv4 相比 YOLOv3 进行了多个方面的改进,包括主干网络的升级、特征聚合模块的优化、激活函数的替换、以及新型的正则化和损失函数的引入。这些改进使得 YOLOv4 在保持实时检测能力的同时,提升了检测的精度和鲁棒性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/53522.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分布式事务Seata原理及其项目使用

0.Seata官方文档 1.Seata概念及原理 Seata是什么 Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。 Seata主要由三个重要组…

SpringBoot整合分页助手

目录 1 导入依赖 2 测试使用 关于分页有些数据 默认访问首页,即默认当前页是 pageNum 1 数据有总条数, total select count(*) 页面大小/每页展示多少条数据, pageSize 10 总页数 , pageCount total / pageSize (需要注意除不尽情况) -- total共7条 select count(*) f…

JAVA基础:值传递和址传递

1 值传递和址传递 值传递 方法调用时,传递的实参是一个基本类型的数据 形参改变,实参不变 public static void doSum(int num1,int num2){} main(){doSum(10,20);int i 10 ;int j 20 ;doSum(i,j) ; } public static void t1(int num){num 20 ;Sys…

[数据集][目标检测]街头摊贩识别检测数据集VOC+YOLO格式758张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):758 标注数量(xml文件个数):758 标注数量(txt文件个数):758 标注类别…

苹果手机照片被删除?如何通过不同的方法来恢复照片

手机已经成为我们生活中不可或缺的一部分,它不仅仅是通讯工具,更是我们记录生活点滴的重要工具之一。然而,正如其他任何设备一样,iPhone上存储的照片有时也会不小心被删除或丢失。 别担心,即使你误删了重要的照片&…

opencv 实现两个图片的拼接去重功能

基础知识介绍 cv::Mat 是OpenCV库中用来表示图像和矩阵数据的核心类之一。它是一个多维数组,可以存储图像像素数据、矩阵数据以及其他类型的数据。以下是关于 cv::Mat 类的一些详细解释: 构造函数:cv::Mat 类有多个构造函数,可以用…

安防监控/视频汇聚平台EasyCVR无法启动并报错“error while loading shared libraries”,如何解决?

安防监控/视频汇聚平台EasyCVR视频管理系统以其强大的拓展性、灵活的部署方式、高性能的视频能力和智能化的分析能力,为各行各业的视频监控需求提供了优秀的解决方案。通过简单的配置和操作,用户可以轻松地进行远程视频监控、存储和查看,满足…

Linux学习-inotify和rsync同步

Inotify 是一个 Linux特性,它监控文件系统操作,比如读取、写入和创建。Inotify 反应灵敏,用法非常简单,并且比 cron 任务的繁忙轮询高效得多。 Inotify实际基于事件驱动机制,为应用程序监控文件系统事件提供了实时响应…

JVM系列(五) -内存相关的调优参数

一、摘要 在上篇文章中,我们详细介绍了 JVM 的内存布局。 今天这篇文章,并结合之前的介绍知识,一起了解一下 JVM 内存相关的调优参数。 二、内存设置相关的命令 所有内存溢出的问题,除了代码可能存在问题以外,更直观的问题是内存空间不足,如何通过参数来控制各区域的…

Puppeteer-Cluster:并行处理网页操作的新利器

在现代Web开发和自动化测试领域,高效地处理多个网页操作任务成为了许多开发者和测试工程师的迫切需求。传统的Puppeteer工具虽然功能强大,但在处理大量并发任务时可能会显得力不从心。为此,Puppeteer-Cluster应运而生,作为一个基于…

不小心删除丢失了所有短信?如何在 iPhone 上查找和恢复误删除的短信

不小心删除了一条短信,或者丢失了所有短信?希望还未破灭,下面介绍如何在 iPhone 上查找和恢复已删除的短信。 短信通常都是非正式和无关紧要的,但短信中可能包含非常重要的信息。因此,如果您删除了一些短信以清理 iPh…

030集——自动弹出对话框、选择文件并播放wav音频文件(winform窗体)——C#学习笔记

如图所示,效果如下: 步骤如下: 新建一个winform窗体,双击界面,进入代码区: 复制(下面代码中命名空间内的代码)到(你的命名空间下),运行。 using …

ZBrush入门使用介绍——12、折边

大家好,我是阿赵。   继续介绍ZBrush的功能。   如果拿一个立方体,进行CtrlD增加细分 会出现在边缘的线会被平滑的情况,这时候原来立方体的形状会发生一定的变化,不能保持原来的形状。 如果立方体真的只有8个顶点&#xff0…

266-基于Xilinx Kintex-7 XC7K325T 的12路光纤Switch交换平台

一、板卡概述 该系统是由两块模块组成,分别是基于Xilinx公司的FPGAXC7K325T-2FFG900 芯片,pin_to_pin兼容FPGAXC7K410T-2FFG900 的模块和一个FPGA夹层卡(FMC)模块。前者支持64bit DDR3容量2GByte,USB3.0接口;HPC的FMC连…

C++: set与map容器的介绍与使用

本文索引 前言1. 二叉搜索树1.1 概念1.2 二叉搜索树操作1.2.1 查找与插入1.2.2 删除1.2.3 二叉搜索树实现代码 2. 树形结构的关联式容器2.1 set的介绍与使用2.1.1 set的构造函数2.1.2 set的迭代器2.1.3 set的容量2.1.4 set的修改操作 2.2 map的介绍与使用2.2.1 map的构造函数2.…

【尚跑】2024陕西淳化天然氧吧半程马拉松赛149顺利完赛

1、赛事背景 奔跑美丽淳化,畅游天然氧吧。9月8日上午,2024淳化天然氧吧半程马拉松赛在淳化县润镇东街鸣枪开跑,4000名马拉松爱好者相聚美丽淳化,赏荞麦花海、闻硕果飘香,共同开启这场挑战自我、超越极限的奔跑之旅 本次…

游戏的3C,Al

在游戏开发中,“3C”通常指的是三个重要的组成部分:Character(角色)、Camera(摄像机)和Control(控制)。这三者对于创建沉浸式和流畅的游戏体验至关重要。而AI(人工智能&a…

flask下https教程

一、定义 linux 下flask https 协议 二、实现 linux 下flask https 协议 生成SSL证书和密钥文件。您可以使用工具如openssl来生成自签名SSL证书和密钥文件。运行以下命令生成证书和密钥文件: openssl req -x509 -newkey rsa:4096 -nodes -out cert.pem -keyout…

django实操:换用自建mysql用户表(一次失败的经历)

前言 别想了,基础不扎实的话,还是老老实实用django自带的用户模块吧!这是一次耗时而且失败了的经历。 因为是一次失败的经历,这里我给出一些残酷的经验。 实操 重写用户模型 这是我唯一成功的案例,你需要建一个类似如下…

springboot 的共享session方案?

问:springboot 的共享session方案? 参考: https://juejin.cn/post/7195227930077691963分布式之session共享问题 4种解决方案及spring session的使用_分布式session共享方案-CSDN博客 什么是 Session ? 答:因为Http协…