微服务之分布式理论zookeeper概述

一、分布式技术相关的理论

CAP理论

CAP定理(CAP theorem),⼜被称作布鲁尔定理(Eric Brewer),1998年第⼀次提出. 
最初提出是指分布式数据存储不可能同时提供以下三种保证中的两种以上: 

(1) ⼀致性(Consistency): 每次读取收到的信息都是最新的; 
(2) 可⽤性(Availability): 每个请求都会收到(⾮错误)响应; 
(3) 分区容错性(Partition tolerance): 尽管节点之间的⽹络不通导致分区,系统仍继续运⾏.

事实上,不仅仅是分布式数据存储应⽤,所有分布式系统都必须在CAP这三点之间进⾏权衡. 

  分区容错性

在分布式系统中,分区容错性是指系统能够继续正常工作,即使网络分区(即网络中的一部分节点无法与其他节点通信)发生。分布式系统通常使用复制和容错技术来实现分区容错性。例如,在分布式数据库系统中,数据可以复制到多个节点上,当一个节点无法与其他节点通信时,系统仍然可以使用其他节点上的数据进行操作。

BAS理论

数据⼀致性模型

如果数据的读取、写⼊、更新的结果是可预测的,称之为遵循数据⼀致性模型.

(1) 严格⼀致性(Strict Consistency)(强) 
不论在哪个节点,看到的资源都是统⼀的结果; 
(2) 顺序⼀致性(Sequential Consistency)(弱) 
节点的数据变动和操作的顺序保持⼀致; 
(3) 最终⼀致性(Eventual Consistency)(弱) 
所有数据副本最终都会变得⼀致.

 ⼀致性算法

  • Paxos : Zookeeper 
  • Raft : ETCD

BASE理论

BASE是Basically Available(基本可⽤)、 Soft state(软状态)和Eventual Consistency(最终⼀致性)三个短语的缩写. 

(1) 基本可⽤: 可能是部分功能不可⽤或者是响应时间延⻓; 
(2) 软状态: 不同系统/节点之间,数据存在过渡状态; 
(3) 最终⼀致: 经过系统内部协调机制,最终所有的节点保持⼀致(分布式系统中的⼀致并不⼀定指数据保持⼀样).

两条系统设计的原则

墨菲定律

墨菲定律(Murphy's law)是⼀种⼼理学效应,由爱德华·墨菲(Edward A. Murphy)提出,亦称墨菲法则. 


墨菲定律: 如果有两种或两种以上的⽅式去做某件事情,⽽其中⼀种选择⽅式将导致灾难,则必定有⼈会做出这种选择. 


本质: 如果事情有变坏的可能,不管这种可能性有多⼩,它总会发⽣.

康威定律

“设计系统的架构受制于⽣产这些设计的组织的沟通结构

二、zookeeper

2.1概述

zookeeper是一个分布式协调服务。所谓分布式协调主要是来解决分布式系统中多个进程之间的同步限制,防止出现脏读,例如我们常说的分布式锁。

补充安装 测试

import sys
from kazoo.client import KazooClient, KazooStatedef main():zk = KazooClient(hosts='118.25.185.49:3306',timeout=100)zk.start()data, stat = zk.get("/")print(data)print(stat)chilen = zk.get_children("/")print(chilen)zk.stop()zk.close()if __name__ == "__main__":main()

2.2应用案例

zookeeper的同类产品

  • Consul
  • ETCD
  • Doozer

ZooKeeper -server host:port cmd args# 连接到指定主机和端口的 ZooKeeper 服务器,并执行指定的命令和参数。stat path [watch]# 获取指定路径节点的状态,可以设置监视器以接收更改通知。set path data [version]# 将指定路径节点的数据设置为给定数据,可选进行版本检查。ls path [watch]# 列出指定路径节点的子节点,可以设置监视器以接收更改通知。delquota [-n|-b] path# 删除指定路径的配额,可以是命名空间(-n)或字节(-b)。ls2 path [watch]# 列出指定路径节点的子节点,可以设置监视器以接收更改通知。setAcl path acl# 为指定路径节点设置 ACL(访问控制列表)。setquota -n|-b val path# 为指定路径设置配额,可以是命名空间(-n)或字节(-b),并指定值。history# 显示命令历史记录。redo cmdno# 重做指定的命令编号。printwatches on|off# 打印监视器状态,可以开启或关闭。delete path [version]# 删除指定路径的节点,可以指定版本。sync path# 同步指定路径。listquota path# 列出指定路径的配额信息。rmr path# 递归删除指定路径。get path [watch]# 获取指定路径节点的数据,可以设置监视器。create [-s] [-e] path data acl# 创建具有指定数据和 ACL 的节点,可以选择顺序(-s)或临时(-e)。addauth scheme auth# 添加指定方案和凭证的认证信息。quit# 退出 ZooKeeper 客户端。getAcl path# 获取指定路径节点的 ACL。close# 关闭 ZooKeeper 客户端连接。connect host:port# 连接到指定主机和端口的 ZooKeeper 服务器。

 zookeeper中的数据是存储在内存当中的,因此它的效率十分高效。它内部的存储方式十分类似于文件存储结构,采用了分层存储结构。但是它和文件存储结构的区别是,它的各个节点中是允许存储数据的,需要注意的是zk的每个节点存储数据不能超过1M。它的内存数据结果如下图:

我们可以通过不同的路径访问到不同的节点,因为它是分层结构,我们也可以通过某一个父节点,获取到该节点下的所有子节点信息。

   1)create:创建一个新节点,通过指定路径的方式创建节点,例如创建路径为/A/A1/demo,则会在A1节点下创建一个demo节点;

  2)delete:删除节点,通过路径的方式删除节点,如果删除路径为/A/A1/demo,则会删除A1节点下的demo节点;

 3)exists:判断指定路径下的节点是否存在,例如判断路径为/A/A1/demo,则会判断A1节点下的demo节点是否存在;

  4)get:获取指定路径下某个节点的值是什么,例如获取路径为/A/A1/demo,则会获取A1节点下的demo节点的值什么;

  5)set:为指定路径的节点进行赋值操作,例如修改路径为/A/A1/demo,则会修改A1节点下的demo节点的值;

 6)get children:获取指定路径节点下的子节点信息,例如获取路径为/A,则会获取A节点下的A1和A2节点;

   7)sync:获取到同步数据,这个涉及到了zk的原理,zk集群属于最终一致性,调用该方法,可以获取到最终的结果值,如果不使用该方法,在查询的时候可能获取到的值是中间值;

zk中创建的节点分为两种:永久性节点和临时性节点。永久性节点即创建以后,在不执行delete命令的前提下,该节点是永久存在的;而临时节点与session有关,每个客户端与zk建立链接的时候会生成一个session,这个session不会因为链接zk服务器节点的变化而变化,只有当客户端断开连接以后,该session才会消失,而临时节点会随着session的消失而消失。

2.3Zookeeper核⼼概念

  • Session会话
  • 数据模型
  • Watch

Session会话

  • ⼀个客户端连接⼀个会话,由Zookeeper分配唯⼀的会话ID; 
  • 客户端以特定的时间间隔发送⼼跳以保持会话有效,tickTime; 
  • 超过会话超时时间未收到客户端的⼼跳,则判定客户端“死”了,默认是两倍的tickTime; 
  • 会话中的请求按FIFO顺序执⾏.

数据模型

Znode命名规范 

Znode节点类型

顺序节点

Znode数据构成

Znode 元数据stat结构

ACL: 访问控制列表

ACL权限:
上面的属性中我们说到了个ACL权限,这里的权限指的是对节点的操作权限,一共分为5个权限C(Create,节点创建权限)、D(Delete,删除节点权限)、R(Read,读取节点的权限)、W(Write,更新节点的权限)、A(Admin,管理员权限)

create [-s] [-e] path data acl 
setAcl path acl 
getAcl path

Zookeeper中的时间

Watch监听机制

Zookeeper具有发布订阅功能,这就要求订阅的主题发生变化时需要通知左右的订阅者并且获取新的主题信息,Zookeeper就是通过Watcher来实现的。
客户端可以创建并向服务段注册一个Watcher监听,监听在客户端是由WatchManager来管理的,当主题发生变化时会通过对应的Watcher来通知客户端。

Watch重要特性

⼀次性触发

  • Watch触发后即被删除,要持续监控变化,则需要持续设置watch.

有序性

  • 客户端先得到watch通知,之后才会看到变化结果.
Watch注意事项
  • Watch是⼀次性触发器,如果你获得⼀个watch事件,并且希望得到关于未来更改的通知,则必须设置另⼀个watch;
  • 因为watch是⼀次性触发器,并且在获取事件和发送获取watch的新情求之间存在延迟,所以不能可靠地得到节点发⽣的每个更改;
  • ⼀个watch对象只会被特定的通知触发⼀次。如果⼀个watch对象同时注册了exists、getData,当节点被删除时,删除事件对exists、getData都有效,但只会调⽤watch⼀次.

Zookeeper特性

2.4Zookeeper集群

组⽹⽅式

三台虚拟机
192.168.31.241 
192.168.31.242 
192.168.31.243
通过映射到主机端
2181/2888/3888
容器⽹络⽅案: OpenVSwitch

docker run -d --rm -p 2181:2181 -p 2888:2888 -p 3888:3888 -e ZOO_MY_ID=1 -e ZOO_SERVERS="server.1=0.0.0.0:2888:3888 server.2=192.168.31.242:2888:3888 server.3=192.168.31.243:2888:3888" zookeeper:3.4.11
docker run -d --rm -p 2181:2181 -p 2888:2888 -p 3888:3888 -e ZOO_MY_ID=2 -e 
ZOO_SERVERS="server.1=192.168.31.241:2888:3888 server.2=0.0.0.0:2888:3888 server.3=192.168.31.243:2888:3888" 
zookeeper:3.4.11
docker run -d --rm -p 2181:2181 -p 2888:2888 -p 3888:3888 -e ZOO_MY_ID=3 -e 
ZOO_SERVERS="server.1=192.168.31.241:2888:3888 server.2=192.168.31.242:2888:3888 server.3=0.0.0.0:2888:3888" zookeeper:3.4.11 

2.5zk选主流程

zk的设计目标就是高可用性,那么也就意味着,在使用zk的时候一般都是使用集群而不是单点模式。首先来看一下zk的集群模式,如下图:

该图为zk集群的可用状态,从上图中可以看到,zk的集群是主从集群,客户端可以随意与任何zk服务节点进行连接,并且各个客户端都可以进行读写操作,这是一个和redis主从集群的区别,redis的主从集群,如果客户端是写操作,那么只能连接redis的主节点才可以。

zk的每个客户端是随机连接到zk服务节点的,并且每个客户端都可以进行读写操作,读操作都是在客户端连接的zk节点进行操作;而写操作是有区别的,如果该客户端连接的是leader节点,那么直接进行写操作;如果该客户端连接的是follower节点,那么zk的服务节点会自动将该写操作转到leader节点进行。

 zk的集群为主从集群,那么也就意味着主节点只有一个,那么当主节点挂了以后,该zk集群则会处于不可用状态,既然zk的设计目的是高可用,也就意味着当主节点挂了以后,zk会有一定的方式来快速的选出主节点,让服务恢复可用状态,zk的官方文档中给出的压测报告,7台zk服务,选主耗时大概200ms。

   介绍zk的选举流程之前需要先解释两个概念:zxid以及myid。zxid指的是当前节点的事物id,通俗点说就是当前节点完成的数据同步情况,该值越大,越能说明该节点的数据同步情况越完整,丢失数据的情况越小或者丢失数据越少。myid是在创建zk集群的时候,我们给它的赋值。

 zk的follower节点和leader节点是通过心跳,来查看服务是否可用。在这其中,只要有有一台follower节点发现主节点挂掉,他就开始向其它follower节点发送选主请求,整个集群进入选主流程,不再向外提供服务。

 先假设现在有4个zk节点,分别为node1,node2,node3,node4,他们的myid分别为1,2,3,4选主流程主要分为以下两种情况:

  1.初始启动,在启动阶段时,此时各个服务节点的zxid都为0,只与myid有关。假设启动顺序为node1->node2->node3->node4,当启动动1和2的时候,该zk集群是不可用状态,因为zk的选主必须是过半服务节点同意(包含自己),最低需要启动三个节点才可以进行选举,因此只有node1和node2启动的时候,此时只有两台服务,不满足条件,当第三台节点启动以后,才满足了选主的最低条件,然后进入到选举流程,因为node3的myid最大,所以此时3号节点为leader,然后启动node4,由于此时已经选举出3位leader节点并且过半通过,则不再选取新的主节点。则该集群的leader节点为node3。

    2.运行过程中,初始启动过程中的leader(node3)节点挂掉,假设此时只有node4节点发现leader已经挂掉,node1和node2的Zxid都是10,node4的Zxid为9,选主的时候需要比较zxid和myid,需要注意他们的优先级,zxid为第一优先级,myid为第二优先级,选举流程大致分为以下几步:

   1)node4节点给自己投票,然后将自己的zxid和myid发送给node1和node2节点:

2)node1和node2通过比较zxid和myid,发现node4不能成为leader节点,将各自的zxid和myid发送给node4,然后node4接收到以后,发现node1和node2都比自己时候成为leader节点,会给它们进行投票

 3)node1和node2反驳完node4的选主请求以后,开始进行各自的选主流程,起过程与node4的过程一致,通过上面的优先级,我们可以知道最终node2会成为leader节点,那么以node2为例说一下接下来的流程。node2首先给自己投票,然后将自己zxid和myid推送给node1和node4,此时会发现node2适合成为主节点,则会给node2节点进行投票,最终选出node2成为主节点,zk集群恢复成可用状态。

2.6zk数据一致性

 zk服务一般是以集群状态提供服务,多个zk节点之间的数据一致性是通过zap(原子广播)协议来保证的。zk的数据一致性为最终一致性,需要注意的是他不是实时的,比如node1,node2,node3,其中node3为leader,node1和node2为follower,当node1进行节点创建以后,leader节点肯定为实时更新,但是follower节点不一定为实时更新,因为只要过半通过就算节点已经创建成功,可能会有的节点当前的数据还不是最终态,但是它的更新指令是存在,只是可能还没执行。我们的客户端如果想要读取最终态的数据,那么可以通过使用上面的sync命令,来获取最终数据。

先看一下下面的流程图,然后再进行详细解释:

   1)首先由客户端发送创建节点的指令给到zk节点,假设这个zk节点为follower1节点;

   2)follower1节点发现是写操作节点,则将该指令通过2888端口转发到leader节点执行;

   3)leader节点更新自己zxid信息,也就是事务id信息;

   4)leader节点先将创建节点信息同步到log日志中,然后再follower1和follower2各自的队列中放入创建节点写日志的指令,当follower节点接收到指令以后,执行写日志操作,写入日志成功以后,告诉leader写入完成;leader会判断目前是否已经有过半的节点(包含自己)已经写入完成,如果完成,则先在自己的内存中创建节点,然后将在follower对应的节点中加入在内存中创建节点的指令,然后follower接收到指令以后进行内存操作,操作完成以后告诉leader写入完成,同样需要过半完成;

       5)将创建结束的消息返回给调用的follower,然后返回给客户端,节点创建结束。

上面步骤中的第四步其实就是对原子广播协议的一个大致解释,原子广播协议可以看成两部分,首先原子就代表这只有成功或者失败,没有中间状态;而广播就是并不意味着所有节点都完成相关操作才算完成,只要过半节点是成功的,那么本次操作就算成功完成了。在第四步中提到的队列就是对最终一致性的一个解释,leader会将所有指令按照顺序放入每个follower对应的队列中,每个follower按顺序去执行队列中的指令,达到一个最终一致性的结果。
 

三、RPC原理

3.1概述

Remote procedure call - RPC 
远程过程调⽤

过程是什么? 
过程就是业务处理、计算任务,更直⽩理解,就
是程序; 
像调⽤本地⽅法⼀样调⽤远程的过程.

熟悉的Webserveice、restful接⼜调⽤时都是RPC,仅消息的组织⽅式以及消息协议不同.

远程过程调⽤较本地调⽤有何不同? 

  • 速度相对慢; 
  • 可靠性减弱.

3.2RPC流程

3.3RPC协议

3.3RPC框架

封装好参数编组、消息解组、底层⽹络通信的RPC程序开发框架,带来的便捷是可以直接在其
基础上只专注过程代码编写

为什么要⽤RPC
  • 服务化;
  • 可重⽤;
  • 系统间交互调⽤.

3.4 RPC核⼼概念术语

3.5基于RPC的分布式服务注册与服务发现架构

流程图

步骤

1. 创建Zookeeper集群
2. 制作Kazoo镜像
3. 实现服务注册代码
4. 实现服务发现代码

创建Zookeeper集群

. 制作Kazoo镜像

实现服务注册

实现服务发现代码

四、实战

4.1maven创建zookeeper的增删改查

maven创建zookeeper的增删改查

4.2Curator操作Zookeeper

pom文件配置

<dependency><groupId>org.apache.zookeeper</groupId><artifactId>zookeeper</artifactId><version>3.4.14</version>
</dependency>
<dependency><groupId>org.apache.curator</groupId><artifactId>curator-framework</artifactId><version>2.12.0</version>
</dependency>

创建会话

//创建一个重试策略,连接失败重试三次
RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000,3);
//创建客户端连接
CuratorFramework client =CuratorFrameworkFactory.builder().connectString("127.0.0.1:2181") //连接地址.sessionTimeoutMs(50000)  //会话超时时间.connectionTimeoutMs(30000)  //连接超时时间.retryPolicy(retryPolicy)  //重试机制.build();
//启动客户端
client.start();

创建节点

创建节点需要一个path,这个path是可以是不存在的文件路径,框架会自动创建上父节点。

public static void createNode(CuratorFramework client) throws Exception {String path = "/testClient/test002";client.create().creatingParentsIfNeeded()  //如果父节点不存在则自动创建.withMode(CreateMode.EPHEMERAL)  //创建临时节点.forPath(path); //创建的节点路径
}

查询节点

public static  void getNode(CuratorFramework client) throws Exception {String path = "/testClient/test002";Stat stat = new Stat(); byte[] bytes = client.getData().storingStatIn(stat).forPath(path);System.out.println(new String(bytes));
}

更新节点
更新是有个乐观锁控制的,分为两种情况,一种是更新不传入版本默认更新最新版本,另一种更新需要传入版本,先查询一下版本号再更新,咱看一下指定版本号修改:

 public static void updateNode(CuratorFramework client) throws Exception {String path = "/testClient/test002";Stat stat = new Stat(); //更新并且获取新的版本号int version = client.setData().withVersion(stat.getVersion()).forPath(path).getVersion();}

注意:Stat只能使用一次,下次再使用版本就过期了会报错

删除节点
删除节点同样是可以通过指定版本删除的,咱看一下不通过版本删除的就行。

public static void deleteNode(CuratorFramework client) throws Exception {String path = "/testClient";client.delete().deletingChildrenIfNeeded() //删除节点的同时递归删除子节点.forPath(path);}

咱创建节点后延时两秒删除看一下效果:

监听
Curator实现的监听方式有两种,最常用的是通过NodeCache节点缓存实现的监听。NodeCache监听分为三种:Node Cache用于节点自身的监听;Path Cache用于子节点的监听;Tree Cache既能监听子节点也能监听自身。

看一下简单的Node Cache实现方式:
需要引入对应的pom文件,这里面包含了Zookeeper的一些典型应用场景

<dependency><groupId>org.apache.curator</groupId><artifactId>curator-recipes</artifactId><version>2.12.0</version>
</dependency>

看一下代码实现:

public static void nodeTreeCache(CuratorFramework client) throws Exception {String path = "testClient";//如果path存在,删除路径Stat stat = client.checkExists().forPath("/" + path);if (stat != null) {client.delete().guaranteed().deletingChildrenIfNeeded().forPath("/" + path);}//创建pathclient.create().creatingParentContainersIfNeeded().withMode(CreateMode.PERSISTENT).forPath("/" + path, path.getBytes());//参数:true代表缓存数据到本地PathChildrenCache pathChildrenCache = new PathChildrenCache(client, "/" + path, true);//BUILD_INITIAL_CACHE 代表使用同步的方式进行缓存初始化。pathChildrenCache.start(PathChildrenCache.StartMode.BUILD_INITIAL_CACHE);//监听事件,监听节点的变化pathChildrenCache.getListenable().addListener((cf, event) -> {PathChildrenCacheEvent.Type eventType = event.getType();switch (eventType) {case CONNECTION_RECONNECTED:pathChildrenCache.rebuild();break;case CONNECTION_SUSPENDED:break;case CONNECTION_LOST:System.out.println("链接丢失---------");break;case CHILD_ADDED:System.out.println("增加子节点------");break;case CHILD_UPDATED:System.out.println("更新子节点-------");break;case CHILD_REMOVED:System.out.println("删除子节点-------");break;default:}});}

4.3Zookeeper应用场景

数据发布订阅
发布订阅是将数据发布到Zookeeper的节点上,使用的应用通过订阅节点类动态的获取数据,实现配置数据的几种管理和动态更新。例如使用Zookeeper做配置中心,将yml中的数据库配置或其他一些外部配置发布到Zookeeper对应的节点路径下面,通过节点路径判断当前服务的配置位置,然后再获取子节点中对应的配置信息加载到代码中,实现动态配置。

命名服务
命名服务是分布式项目中常见的一种场景,可以通过指定的名字来获取对应的资源或地址。Zookeeper会在自己的文件系统上创建一个以路径为名称的节点,它可以指向提供的服务的地址,远程对象等。简单来说使用Zookeeper做命名服务就是用路径作为名字,路径上的数据就是其名字指向的实体,例如常见的Zookeeper在Dobbo中的使用。

分布式协调
在分布式项目中我们很多数据是通过MQ来传递操作的,我们通过MQ只能知道当前数据被操作了,但是不清楚执行的结果,到底是执行成功了还是执行失败了,这时候可以通过Zookeeper来通知操作的结果。
设置一个分布式系统中不只是两步操作,有可能是一系列的操作,就可以通过Zookeeper中的内容一直更新,来通知各个节点走到了哪一步了。

分布式锁
在分布式项目中假设我们需要加锁,因为是多个JVM环境一个机器上加的锁对另一个机器上是无效的,所以可以通过zookeeper来实现。例如我们多个机器在zookeeper上创建一个节点,谁先创建出来该节点谁获取到锁,当其他机器创建的时候因为节点已经存在了,所以就报错了,当然这个错try了,然后循环一直创建,锁用完之后会删除节点,省下的机器继续看谁先创建出节点来。

Zookeeper的应用场景还有很多,都是应用其类似于共享文件的属性来设计的,例如用顺序节点来做数据库主键自增等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/5133.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Macs Fan Control Pro for mac激活版:macOS 平台的风扇控制软件

Macs Fan Control Pro是一款用于 macOS 平台的风扇控制软件&#xff0c;它允许用户监控和调整 Mac 电脑的风扇转速。以下是该软件的一些特点和功能&#xff1a; Macs Fan Control Pro for mac激活版下载 风扇监控&#xff1a;Macs Fan Control Pro 提供实时的风扇转速监控&…

uniapp关于iconfont字体图标使用

1、打开[阿里巴巴矢量图标库](https://www.iconfont.cn/)&#xff0c;选择需要的图标添加到购物车 2、点开购物车&#xff0c;将图标添加到项目 3、点开项目&#xff0c;点击下载至本地&#xff0c;会得到一个download.zip包 4、解压download包 5、将包里的iconfont.css和iconf…

Java从菜鸟到高手①

目录 1.数据类型 2.定义变量 2.1.编码方式 2.2.布尔型变量boolean 2.3.隐式类型转化和强制类型转化 2.4类型提升 3.字符串类型 4.运算符 4.1.取余 4.2. &#xff0c;- 4.3逻辑运算&& || &#xff01; 4.4.位运算 4.5.条件运算符 1.数据类型 Java中&#…

2024智能科学与软件工程国际学术会议(ICISSE 2024)

2024智能科学与软件工程国际学术会议&#xff08;ICISSE 2024) 会议简介 2024智能科学与软件工程国际学术会议&#xff08;ICISSE 2024&#xff09;将在北京隆重举行。本次会议汇集了全球智能科学和软件工程领域的专家学者&#xff0c;共同探讨该领域的最新研究成果和发展趋…

超详细的Vue脚手架

文章目录 Node.js介绍安装快速入门控制台输出使用函数模块化编程 npm包管理器介绍命令初始化命令本地安装(了解)全局安装(掌握)批量下载淘宝npm镜像(建议使用) Webpack介绍安装快速入门方式一&#xff1a;webpack原始方式方式二&#xff1a;基于NPM方式 webpack-dev-server 开发…

2024年第十五届蓝桥杯江苏省赛回顾

呜呜呜~~~ 我在考完了后感觉自己直接炸了&#xff1a;好多学到的算法都没有用上&#xff0c;几乎所有的题目都是暴力的。。。 最后十几分钟对于一道dp算法终于有思路了&#xff0c;但是。。匆匆忙忙之间就是没有调试出来。&#xff08;还是交了一道暴力[旋风狗头]直接哭死~~&…

设计模式学习笔记 - 开源实战五(下):总结Mybatis中用到的10种设计模式

概述 本章再对 Mybatis 用到的设计模式做一个总结。它用到的设计模式也不少。有些前面章节已经经过了&#xff0c;有些则比较简单。 SqlSessionFactoryBuilder&#xff1a;为什么要用建造者模式来创建 SqlSessionFactory&#xff1f; 在《Mybatis如何权衡易用性、性能和灵活性…

鸿蒙内核源码分析(汇编基础篇) | CPU在哪里打卡上班

本篇通过拆解一段很简单的汇编代码来快速认识汇编&#xff0c;为读懂鸿蒙汇编打基础.系列篇后续将逐个剖析鸿蒙的汇编文件. 汇编很简单 第一&#xff1a; 要认定汇编语言一定是简单的&#xff0c;没有高深的东西&#xff0c;无非就是数据的搬来搬去&#xff0c;运行时数据主要…

高等学校数字化校园平台介绍

高等学校信息化建设已经进入到跨业务领域信息共享、建立全校统一集成的信息系统阶段&#xff0c;目标是实现整个学校的系统集成、信息共享与工作协同。因此&#xff0c;如何将众多应用系统中大量的信息进行科学、规范的定义和分类&#xff0c;使信息有序流通、保证信息的一致性…

IP定位技术企业网络安全检测

随着信息技术的飞速发展&#xff0c;网络安全问题日益凸显&#xff0c;成为企业运营中不可忽视的一环。在众多网络安全技术中&#xff0c;IP定位技术以其独特的优势&#xff0c;为企业网络安全检测提供了强有力的支持。本文将深入探讨IP定位技术在企业网络安全检测中的应用及其…

使用通义千问,识别需求文档中的输入输出信号存储到excel表格,完成对需求的初步分析

操作步骤如下&#xff1a; 第一步&#xff0c;提取需求的输入输出信号为json格式&#xff0c; 提示词如下&#xff1a; 车速自动闭锁 使能条件&#xff08;a&b&c&d&e&f&#xff09; a. 电源状态为 ON&#xff08;PowerMode ON&#xff09; b. 主驾门锁…

idm下载速度慢解决办法 idm批量下载怎么用 idm优化下载速度 Internet Download Manager解决下载速度慢的方法教程

IDM (Internet Download Manager)是一款兼容性大&#xff0c;支持多种语言的下载管理软件&#xff0c;它可以自动检测并下载网页上的内容&#xff0c;这正是这一优点&#xff0c;使得它受到了广大用户的喜爱。但是在下载的过程中&#xff0c;我们会遇到idm下载速度慢怎么回事&a…

ubuntu搭建node私库Verdaccio

ubuntu搭建node私库Verdaccio Verdaccio 是一个轻量级的私有 npm 代理注册服务器&#xff0c;它是开源的&#xff0c;可以帮助你设置和维护企业内部的 npm 包的存储库。使用 Verdaccio 可以让你完全控制包的发布流程、依赖关系以及访问策略。这篇文章将指导你如何在 Ubuntu 系…

【Elasticsearch】安装配置与使用

1 前期准备 1.1 环境准备 麒麟ARM 64位操作系统 1.2 安装包准备 Elasticsearch下载地址: https://www.elastic.co/cn/downloads/elasticsearch 2 部署elasticsearch 2.1 创建es专用用户 注意&#xff1a;ES不能使用root用户来启动&#xff0c;必须使用普通用户来安装启…

【百度Apollo】探索自动驾驶:小白教学如何使用 Dreamview 播放数据包

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 引入一、Dreamview 简介二、使用 Dreamview 具体步骤步骤一&#xff1a;进入 Apollo Docker 环境步骤二&#xff…

.net报错异常及常用功能处理总结(持续更新)

.net报错异常及常用功能处理总结---持续更新 1. WebApi dynamic传参解析结果中ValueKind Object处理方法问题描述方案1&#xff1a;(推荐&#xff0c;改动很小)方案2&#xff1a; 2.C# .net多层循环嵌套结构数据对象如何写对象动态属性赋值问题描述JavaScript动态属性赋值.net…

初步认识Vscode

4.26初步认识Vscode &#xff08;一&#xff09;快捷键的使用 1. 打开控制端 ctrl ~2. 结束终端 ctrl c3. 多行同时对齐输出 按住shift alt 光标多选4. 多行同时任意位置输出 按住alt 光标单点你想要输入的位置5. 代码太长了&#xff0c;想混行编辑 alt z6. 打开设置控制…

记录一次大数据量接口优化过程

问题描述 记录一次大数据量接口优化过程。最近在优化一个大数据量的接口&#xff0c;是提供给安卓端APP调用的&#xff0c;因为安卓端没做分批次获取&#xff0c;接口的数据量也比较大&#xff0c;因为加载速度超过一两分钟&#xff0c;所以导致接口超时的异常&#xff0c;要让…

【网络原理】TCP协议的相关机制(确认应答、超时重传)

系列文章目录 【网络通信基础】网络中的常见基本概念 【网络编程】Java网络编程中的基本概念及实现UDP、TCP客户端服务器程序&#xff08;万字博文&#xff09; 【网络原理】UDP协议的报文结构 及 校验和字段的错误检测机制&#xff08;CRC算法、MD5算法&#xff09; 文章目…

# 谷歌 Chrome 浏览器无法安装插件的解决方法

谷歌 Chrome 浏览器无法安装插件的解决方法 运用开发模式安装 安装步骤&#xff1a; 1、 将 XX.crx 插件的扩展名改成 .zip 或者 .rar 并解压到文件夹 XX 目录。 1&#xff09;如&#xff1a;下载的 前端框架 vue.js 插件 nhdogjmejiglipccpnnnanhbledajbpd-6.6.1-Crx4Chro…