电路学习——经典运放电路之滞回比较器(施密特触发器)(2024.07.18)

参考链接1: 电子设计教程29:滞回比较器(施密特触发器)
参考链接2: 滞回比较器电路详细分析
参考链接3: 比较器精髓:施密特触发器,正反馈的妙用
参考链接4: 比较器反馈电阻选多大?理解滞后效应,轻松设计正反馈
参考链接5: 比较器基础知识及应用
参考链接6: 四种迟滞比较器
参考链接7: 滞回比较器介绍及高低阈值计算
参考链接8: 【讲堂】“片”(窗口)比较器电路原理图解
参考链接9: 【分享】运放比较器电路特性
参考链接10: 窗口电压比较器电路

  在此感谢各位前辈大佬的总结,写这个只是为了记录学习大佬资料的过程,内容基本都是搬运的大佬博客,觉着有用自己搞过来自己记一下,如果有大佬觉着我搬过来不好,联系我删。

电路学习——经典运放电路之滞回比较器(施密特触发器)(2024.07.18)

  • 1、什么是滞回比较器(施密特触发器)?
  • 2、反向迟滞比较器/滞回比较器(施密特触发器)原理应用
  • 3、同向迟滞比较器/滞回比较器(施密特触发器)原理应用
  • 4、疑惑点以及解答(比较器与运放的联系和区别)
    • 4.1、比较器为啥加上拉电阻?
    • 4.2、比较器与运放用的场景
    • 4.3、输出信号的形式与响应速度
  • 5、滞回比较器拓展之窗口比较器

1、什么是滞回比较器(施密特触发器)?

  首先,比较器长这样(见下图),滞回“比较器”,归根到底还是比较器,这里的滞回是指电路没有那么敏感,有一点的抗干扰能力(比如你信号有杂波,它可以“滤波”),滞回不是一个阈值点,而是创建不同的上升和下降阈值,这使得输出始终保持在低或高的状态。
在这里插入图片描述
  滞回比较器长这样(见下图),可以看出与普通比较器区别是:多了个同相输入端与运放输出端通过电阻相连,也就是多了正反馈回路。
在这里插入图片描述

2、反向迟滞比较器/滞回比较器(施密特触发器)原理应用

  反相滞回比较器:同相端输入基准电压,反向端输入检测信号,当输入电压高于Uth时,比较器输出低电平,当输入电压低于Utl时比较器输出高电平,在两者之间保持。
  在实际应用中,该电路通常用于保护某个值在一定范围内,这个范围可以人为设定,因此需要设置参考电压,如下图通过 V C C = 5 V VCC=5V VCC=5V R 1 = 10 k Ω R_1=10kΩ R1=10kΩ R 2 = 10 k Ω R_2=10kΩ R2=10kΩ分压设定触发电压 V A V_A VA,那么 V A = R 2 R 1 + R 2 ∗ V C C = 10 k Ω 10 k Ω + 10 k Ω ∗ 5 V = 2.5 V V_A=\frac{R_2}{R_1+R_2}*VCC=\frac{10kΩ}{10kΩ+10kΩ}*5V=2.5V VA=R1+R2R2VCC=10kΩ+10kΩ10kΩ5V=2.5V,反相输入端输入电压为 V i n V_{in} Vin,输出端电压为 V o V_o Vo
在这里插入图片描述
  当 V i n < V A V_{in}<V_A Vin<VA,即 V i n < 2.5 V V_{in}<2.5V Vin<2.5V时,由于比较器特性,输出 V o V_o Vo为低电平,即 0 V 0V 0V,那么分析相当于 V C C VCC VCC R 1 R_1 R1 R 2 / / R 4 R_2//R_4 R2//R4,等效电路图如下图仿真所示,设定 V C C = 5 V VCC=5V VCC=5V V D D = 5 V VDD=5V VDD=5V R 1 = 10 k Ω R_1=10kΩ R1=10kΩ R 2 = 10 k Ω R_2=10kΩ R2=10kΩ R 3 = 10 k Ω R_3=10kΩ R3=10kΩ R 4 = 100 k Ω R_4=100kΩ R4=100kΩ,那么电阻分压后: V A = R 2 R 1 + R 2 / / R 4 ∗ V C C = 10 k Ω 10 k Ω + 10 k Ω / / 100 k Ω ∗ 5 V = 10 k Ω 10 k Ω + 9.09091 k Ω ∗ 5 V = 2.381 V V_A=\frac{R_2}{R_1+R_2//R_4}*VCC=\frac{10kΩ}{10kΩ+10kΩ//100kΩ}*5V=\frac{10kΩ}{10kΩ+9.09091kΩ}*5V=2.381V VA=R1+R2//R4R2VCC=10kΩ+10kΩ//100kΩ10kΩ5V=10kΩ+9.09091kΩ10kΩ5V=2.381V
在这里插入图片描述
在这里插入图片描述

  当 V i n > V A V_{in}>V_A Vin>VA,即 V i n > 2.5 V V_{in}>2.5V Vin>2.5V时,设定 V C C = 5 V VCC=5V VCC=5V V D D = 5 V VDD=5V VDD=5V R 1 = 10 k Ω R_1=10kΩ R1=10kΩ R 2 = 10 k Ω R_2=10kΩ R2=10kΩ R 3 = 10 k Ω R_3=10kΩ R3=10kΩ R 4 = 100 k Ω R_4=100kΩ R4=100kΩ,由于比较器特性,输出 V o V_o Vo V D D VDD VDD拉高为高电平,即 5 V 5V 5V,那么电路分析那么电阻分压后(相当于 V C C VCC VCC R 1 / / ( R 3 + R 4 ) R_1//(R_3+R_4) R1//(R3+R4) R 2 R_2 R2): V A = 2.609 V V_A=2.609V VA=2.609V
在这里插入图片描述
在这里插入图片描述

  可以看出,以上两个计算算出了两个 V A V_A VA分别为 2.381 V 2.381V 2.381V 2.609 V 2.609V 2.609V,因此下图中的 U l = 2.381 V U_l=2.381V Ul=2.381V U h = 2.609 V U_h=2.609V Uh=2.609V。如果输入的 V i n < U l V_{in}<U_l Vin<Ul,即 V i n < 2.381 V V_{in}<2.381V Vin<2.381V,输出就是低电平, V i n > U h V_{in}>U_h Vin>Uh,即 V i n > 2.609 V V_{in}>2.609V Vin>2.609V,输出就是高电平。可以看出,中间相当于有一个缓冲区。
在这里插入图片描述
  通过构建仿真电路,我们仿真一下上面计算的值对不对,橙色波形是输入的信号(这里采用的是三角波,方便查看电压值变化),红色波形是比较器输出的信号。
在这里插入图片描述在这里插入图片描述
  通过示波器,我们可以看到两个电压值分别为 2.414 V 2.414V 2.414V 2.714 V 2.714V 2.714V,与计算的值有一定的误差,目前还不确定该误差正常不正常,按理说仿真是理想的,应该与计算值无误的,这个以后看有机会确定一下这个误差来源吧。

3、同向迟滞比较器/滞回比较器(施密特触发器)原理应用

  同相滞回比较器:同相端输入检测信号,反向端输入基准电压,当输入电压高于Uth时,比较器输出高电平,当输入电压低于Utl时比较器输出低电平,在两者之间保持。
  类比于反向迟滞比较器,同向迟滞比较器的信号输入是在同相输入端,参考电压设置在反向输入端,同样是正反馈回路。这里就不贴图了。

4、疑惑点以及解答(比较器与运放的联系和区别)

4.1、比较器为啥加上拉电阻?

在这里插入图片描述
  解惑:很多人会疑惑输出端为什么要加一个上拉电阻?
  答:相较于运放采用推挽输出的方式,比较器采用开集输出,需要加上拉电阻

4.2、比较器与运放用的场景

  运放一般工作在闭环负反馈状态(线性区),主要作用是对输入端信号进行放大;比较器工作在开环状态(非线性区),主要是对输入端的信号进行比较判别,翻转速度比较快
在这里插入图片描述
在这里插入图片描述

  在对速度要求不高的时候,运放可以工作于开环当做比较器使用,但输出会受到电源轨的限制因此需要注意电平匹配问题。反过来电压比较器在大部分情况下不能作为运放使用,主要是由于比较器没有做相位补偿闭环容易不稳定。

4.3、输出信号的形式与响应速度

  相较于运放输出的是模拟信号,比较器输出的是高低电平对应数字的0和1集电极开路使其可兼容TTL或CMOS
  相较于运放,比较器的响应速度比较快,这也是由于其内部没有做相位补偿的缘故。

5、滞回比较器拓展之窗口比较器

  将两个滞回比较器搭配使用,可以做出一个窗口比较器,下限运放的正端接的被测信号,负端则是基准。而上限运放正端接基准,负端接被测信号。本电路有两个基准比较端,整定值分别为+5V和-5V。由电路结构可知,只要+5V>IN>-5V,换言之,只在输入信号在+5V~-5C“该片范围”之内,电路就会维持原态(或称静态)的高电平输出状态。反之,IN信号要么高于+5V,要么低于-5V,只要出离了“该片范围”,N1(或N2)的输出端即会翻转,变成低电平状态。

在这里插入图片描述
  这里假设输入为( − 5 V , + 5 V -5V,+5V 5V+5V),上面部分同相输入端电压大于反向输入端电压,那么输出被R5拉高;下面部分同相输入端电压大于反向输入端电压,那么也是输入端被R5拉高,所以上下两个输出都是高电平。具体这里不在分析,可以参考上面的分析计算;
  这里假设输入为( − ∞ -∞ − 5 V -5V 5V)、( 5 V 5V 5V,+∞),上面部分同相输入端电压小于反向输入端电压,那么输出为低电平(这里是双电源供电,应该是输出-15V);下面部分同相输入端电压大于反向输入端电压,因为比较器是开路集电极输出(这个意思就是集电极什么都没有接,所以在这里,下面的比较器输出端被上面运放输出端拉低至0V),所以输出是低电平。
  可以看到这里没有正反馈电阻,当然你也可以添加正反馈电阻,这个正反馈电阻一般取100KΩ。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/49440.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【iOS】进程与多线程

目录 前言进程和线程进程和线程的区别多线程的意义时间片概念 线程的生命周期线程池的运行策略自旋锁和互斥锁自旋锁互斥锁自旋锁和互斥锁区别原子属性 iOS多线程技术方案 前言 学习此文&#xff1a;iOS多线程 在平时的iOS开发中&#xff0c;多线程是我们常会遇到的&#xff0…

新手教学系列——如何在MacOS 10.13.6(老系统)手动安装和配置Pyenv

前言 对于使用老旧系统&#xff08;如MacOS 10.13.6&#xff09;的用户来说&#xff0c;安装和管理Python版本可能会遇到一些挑战。特别是由于Homebrew不再支持老系统&#xff0c;许多软件安装变得困难重重。本文将详细介绍如何在这样的环境下手动安装和配置Pyenv&#xff0c;…

BGP选路之Next Hop

原理概述 当一台BGP路由器中存在多条去往同一目标网络的BGP路由时&#xff0c;BGP协议会对这些BGP路由的属性进行比较,以确定出去往该目标网络的最优BGP路由,然后将该最优BGP路由与去往同一目标网络的其他协议路由进行比较&#xff0c;从而决定是否将该最优BGP路由放进P路由表中…

数据代理实践

1&#xff0c;什么事数据代理机制&#xff1f; 通过访问 代理对象的属性 来向该访问 目标对象的属性 数据代理机制的视线需要依靠&#xff0c;Object.defineProperty()方法 2&#xff0c; ES6新特性&#xff1a; 在对象中的函数/方法 &#xff1a;function是可以省略的 &l…

宝塔国际版Docker Manager 3.4获取镜像列表报错解决办法

宝塔国际版安装Docker Manager 3.4,遇到获取镜像列表的时候报错。 解决办法 找到:/www/server/panel/plugin/docker/docker_main.py文件 替换函数utc_to_local 原代码 # UTC时间转换为时间戳def utc_to_local(self, utc_time_str, utc_format=%Y-%m-%dT%H:%M:%S):

机器学习(五) -- 无监督学习(1) --聚类2

系列文章目录及链接 上篇&#xff1a;机器学习&#xff08;五&#xff09; -- 无监督学习&#xff08;1&#xff09; --聚类1 下篇&#xff1a; 前言 tips&#xff1a;标题前有“***”的内容为补充内容&#xff0c;是给好奇心重的宝宝看的&#xff0c;可自行跳过。文章内容被…

2个案例区分是平行眼还是交叉眼,以及平行眼学习方法

案例一&#xff1a; 交叉眼&#xff1a;看到凸出的“灌水”&#xff0c;是交叉眼。PS&#xff1a;看的时候&#xff0c;眼是斗鸡眼&#xff0c;眼睛易疲劳 平行眼&#xff1a;看到凹陷的“灌水”&#xff0c;是平行眼。PS&#xff1a;看的时候眼睛是平视&#xff0c;不容易疲…

springboot校园车辆管理系统-计算机毕业设计源码63557

校园车辆管理系统 摘 要 校园车辆管理系统是当前高校校园管理中的一个重要方面&#xff0c;其有效管理和调度对于提升校园的运行效率和管理水平至关重要。本论文基于Spring Boot框架开发了一套校园车辆管理系统&#xff0c;系统主要包括用户和管理员两大角色&#xff0c;涵盖…

Sprint Boot 2 核心功能(二)

数据访问 1、SQL 1.1、数据源的自动配置-HiKariDataSource 1.1.1、导入JDBC场景 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-jdbc</artifactId> </dependency>数据库驱动&#xff1…

什么是湖仓一体?湖仓一体解决了什么问题?

目录 一、数据仓库&数据湖&湖仓一体概念辨析 1.数据仓库&#xff08;Data Warehouse&#xff09; 2.数据湖&#xff08;Data Lake&#xff09; 3.湖仓一体&#xff08;Lakehouse&#xff09; 二、湖仓一体的优点 三、湖仓一体要解决什么问题? 四、结语 随着当前大数据…

在spyder中使用arcgis pro的包

历时2天终于搞定了 目标&#xff1a;在anconda中新建一个arcpyPro环境&#xff0c;配置arcgispro3.0中的arcpy 一、安装arcgispro3.0 如果安装完之后打开arcgispro3.0闪退&#xff0c;就去修改注册表&#xff08;在另一台电脑安装arcgispro遇到过&#xff09; 安装成功后可…

Python3网络爬虫开发实战(1)爬虫基础

一、URL 基础 URL也就是网络资源地址&#xff0c;其满足如下格式规范 scheme://[username:password]hostname[:port][/path][;parameters][?query][#fragment] scheme&#xff1a;协议&#xff0c;常用的协议有 Http&#xff0c;https&#xff0c;ftp等等&#xff1b; user…

如何借助生成式人工智能引领未来的科技狂潮

如何借助生成式人工智能引领未来的科技狂潮 1. 生成式AI的现状1.1 技术基础1.1.1 深度学习1.1.2 生成对抗网络&#xff08;GANs&#xff09;1.1.3 变分自编码器&#xff08;VAEs&#xff09; 1.2 主要应用1.2.1 语言模型1.2.2 图像生成1.2.3 音频与视频生成 2. 未来的发展趋势2…

DNS服务器的搭建

目录 1、DNS服务器端软件 2、DNS服务器搭建 第⼀步&#xff1a;环境准备 第二步&#xff1a;web主机的搭建 第三步&#xff1a;服务器端配置DNS 第四步&#xff1a;配置DNS主机 第五步&#xff1a; 检查配置文件是否正确 3、搭建完成 回到客户端测试 1、DNS服务器端软…

Java语言程序设计基础篇_编程练习题*15.21(拖动点)

*15.21(拖动点) 绘制一个圆&#xff0c;在圆上有三个随机点。连接这些点构成一个三角形。显示三角形中的角度。使用鼠标沿着圆的边拖动点。拖动的时候&#xff0c;三角形以及角度动态地重新显示&#xff0c;如图15-30b 所示。计算三角形角度的公式参考程序清单4-1 可以参考上…

SD换脸reactor

目前安装最复杂的插件 ReActor&#xff0c; 安装吐了&#xff0c;幸亏自己是屌丝程序员&#xff0c;插件是通过python写的&#xff0c;通过给源代码输出一些信息&#xff0c;最终定位问题&#xff0c;安装成功了。看看他的换脸效果. 图生图 重绘幅度为0 reactor 设置五官图像…

【Django】在vscode中运行调试Django项目(命令及图形方式)

文章目录 命令方式图形方式默认8000端口设置自定义端口 命令方式 python manage.py runserver图形方式 默认8000端口 设置自定义端口

vue3+vite 实现动态引入某个文件夹下的组件 - glob-import的使用

<template><div class"user-content"><HeaderTitle title"用户详情"></HeaderTitle><div class"main-content"><div><UserForm /></div><div><TableList></TableList></d…

基于Python的帕金森病人步态分析

目录 摘要一、引言1.背景知识2.实验目的和意义 二、实验方法1.实验环境2.实验步骤2.1 生成信号&#xff0c;进行手动傅里叶变换以及内置 FFT 函数傅里叶变换2.2 进行手动傅里叶变换以及内置 FFT 函数傅里叶变换2.3 基于傅里叶变换的步态信息分析2.4 基于傅里叶变换的卷积分析 3…

【事半功倍】视频素材播放之不二法门——倍速之法,无级变速

【事半功倍】视频素材播放之不二法门——倍速之法&#xff0c;无级变速 一、一般の三种方式1.1 原生H5 video1.2 Video.js1.3 动态切换播放速度 二、最佳设置三、效果 一、一般の三种方式 1.1 原生H5 video 对于原生HTML5 video 元素&#xff0c;你可以直接使用 playbackRate…