BGP选路之Next Hop

原理概述
当一台BGP路由器中存在多条去往同一目标网络的BGP路由时,BGP协议会对这些BGP路由的属性进行比较,以确定出去往该目标网络的最优BGP路由,然后将该最优BGP路由与去往同一目标网络的其他协议路由进行比较,从而决定是否将该最优BGP路由放进P路由表中。BGP路由属性的比较顺序为Preferred Value属性、Local Preference属性、路由生成方式、AS_Path属性、Origin属性、MED属性、BGP对等体类型等,如果前面这些路由属性都完全相同或在比较选择的过程中可被忽略,则将比较路由的.NextHop属性。
Next Hop属性记录了去往目标网络所对应的下一跳IP地址。BGP在比较Next Hop属性时,会优选去往Next Hop属性中IP地址的IGP开销最小的路由。需要注意的是,如果一条BGP路由的Next Hop属性中的P地址不可达,则该条路由在BGP路由表中不会被标记为可用路由,从而也就根本无法参与BGP路由协议的选路过程。
BGP路由器在发布路由给EBGP对等体时,该路由的Next Hop 的IP地址会被自动修改,但发布路由给IBGP对等体时,Next Hop的IP地址不会被自动修改。为了满足不同网络环境的需求,当路由器发布路由给IBGP对等体时,也可以手动修改Next Hop的IP地址。


实验目的
理解Next Hop属性的概念与作用·掌握修改Next Hop属性的方法
理解Next Hop属性对BGP路由协议选路的影响实验内容

R1属于AS 100,R2、R3和R4属于AS 200。R1的Loopback 1接口模拟客户所在的网络,R4的Loopback 1接口模拟目标服务器所在的网络。所有的路由器都运行BGP,同时R2、R3和R4还运行OSPF。R1与R2和R3之间的EBGP邻居关系采用直连物理接口来建立,R2、R3、R4之间的IBGP邻居关系采用Loopback 0接口来建立。最终的目标是实现AS 100的客户与AS 200的服务器能够进行正常通信,并且不能出现非对称路由的现象。

1、基本配置
R1:
sys
sysname R1
int g0/0/0
ip add 10.0.12.1 24
int g0/0/1
ip add 10.0.13.1 24
qinterface LoopBack0ip address 10.0.1.1 255.255.255.255
#
interface LoopBack1ip address 10.0.100.1 255.255.255.255
#
bgp 100router-id 10.0.1.1peer 10.0.12.2 as-number 200peer 10.0.13.3 as-number 200#ipv4-family unicastundo synchronizationnetwork 10.0.100.1 255.255.255.255peer 10.0.12.2 enablepeer 10.0.13.3 enableR2:
sys
sysname R2
int loop 0
ip add 10.0.2.2 32
int g0/0/0
ip add 10.0.12.2 24
int g0/0/1
ip add 10.0.24.2 24
q
bgp 200router-id 10.0.2.2peer 10.0.3.3 as-number 200peer 10.0.3.3 connect-interface LoopBack0peer 10.0.4.4 as-number 200peer 10.0.4.4 connect-interface LoopBack0peer 10.0.12.1 as-number 100#ipv4-family unicastundo synchronizationpeer 10.0.3.3 enablepeer 10.0.4.4 enablepeer 10.0.12.1 enable
#
ospf 1 router-id 10.0.2.2area 0.0.0.0network 10.0.24.0 0.0.0.255network 10.0.2.2 0.0.0.0R3:
sys
sysname R3
int loop 0
ip add 10.0.3.3 32
int g0/0/1
ip add 10.0.13.3 24
int g0/0/0
ip add 10.0.34.3 24
q
bgp 200peer 10.0.2.2 as-number 200peer 10.0.2.2 connect-interface LoopBack0peer 10.0.4.4 as-number 200peer 10.0.4.4 connect-interface LoopBack0peer 10.0.13.1 as-number 100#ipv4-family unicastundo synchronizationpeer 10.0.2.2 enablepeer 10.0.4.4 enablepeer 10.0.13.1 enable
#
ospf 1 router-id 10.0.3.3area 0.0.0.0network 10.0.34.0 0.0.0.255network 10.0.3.3 0.0.0.0R4:
sys
sysname R4
int loop 0
ip add 10.0.4.4 32
int loop 1
ip add 10.0.100.4 32
int g0/0/1
ip add 10.0.24.4 24
int g0/0/0
ip add 10.0.34.4 24
q
bgp 200peer 10.0.2.2 as-number 200peer 10.0.2.2 connect-interface LoopBack0peer 10.0.3.3 as-number 200peer 10.0.3.3 connect-interface LoopBack0#ipv4-family unicastundo synchronizationnetwork 10.0.100.4 255.255.255.255peer 10.0.2.2 enablepeer 10.0.3.3 enable
#
ospf 1 router-id 10.0.4.4area 0.0.0.0network 10.0.24.0 0.0.0.255network 10.0.34.0 0.0.0.255network 10.0.4.4 0.0.0.0network 10.0.100.4 0.0.0.0

 

 可以看到,R1的 BGP路由表中有两条去往10.0.100.4/32的路由信息,下一跳分别为R2与R3。R1通告的10.0.100.1/32网络的Next Hop为0.0.0.0,即自己通告的BGP路由信息的Next Hop为0.0.0.0。

可以看到,R4的 BGP路由表中也有两条去往10.0.100.1/32网络的路由信息,NextHop分别为10.0.12.1与10.0.13.1,但没有标记为可用( valid)。

可以发现,R4的IP路由表中并没有去往10.0.100.1/32的路由信息,也没有去往10.0.12.1与10.0.13.1的路由信息。而在R4的BGP路由表中,虽有两条去往10.0.100.1/32的路由信息,但没有标记为可用,说明R4认为这两条路由信息的下一跳都是不可达的。

可以看到,R2的BGP路由表中有两条去往10.0.100.1/32的路由信息,其中 Next Hop为10.0.12.1的路由信息标记为可用。根据前面的实验步骤得知,10.0.100.1/32路由在R1上的Next Hop为0.0.0.0,说明当10.0.100.1/32的路由信息在由R1传递至EBGP对等体R2的过程中,Next Hop属性会被自动修改为发送BGP报文的源地址,即 10.0.12.1。而去往10.0.100.1/32的路由信息的Next Hop在R2与R4上均为10.0.12.1,说明10.0.100.1/32这条路由信息在由R2传递至IBGP对等体R4时,Next Hop属性不会自动被修改。R3上的现象与R2上的现象类似,这里不再赘述。
为了使R4的BGP路由表中去往10.0.100.1/32的路由信息标记为可用,并放进P路由表中,必须使R4去往10.0.100.1/32的 BGP路由信息中的Next Hop是可达的。实现这一要求的方法有两种:

第一种方法是将EBGP对等体之间的链路通告进IGP网络;第二种方法是在R2和R3将路由信息传递给IBGP对等体R4时,使用发送 BGP报文的源地址作为BGP路由的下一跳。

在实际应用中,通常会使用第二种方法,本实验也将采用这种方法。
在R2上使用peer 10.0.4.4 next-hop-local和 peer 10.0.3.3 next-hop-local 命令,使BGP路由信息传递给IBGP对等体R4和R3时,使用R2发送BGP报文的源地址作为BGP路由的下一跳来代替原有的Next Hop。

在R3上也进行类似操作

  peer 10.0.2.2 next-hop-local

  peer 10.0.4.4 next-hop-local

在R2上也进行类似操作

  peer 10.0.4.4 next-hop-local

  peer 10.0.3.3 next-hop-local

效果图如下

虽然客户网络与服务器之间能够进行通信了,但实际上还存在一些问题。
在R1上使用tracert命令验证从10.0.100.1/32去往10.0.100.4/32的报文所经过的路径。可以看到,从R4去往10.0.100.1/32时使用的是经过R3的路径。
通信双方的往返报文选用不同路径的现象称为不对称路由。对于某些特定应用,以及在部署了某些特别的安全设备和安全策略的情况下,不对称路由的存在可能会导致通信中断的现象。


 


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/49437.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据代理实践

1,什么事数据代理机制? 通过访问 代理对象的属性 来向该访问 目标对象的属性 数据代理机制的视线需要依靠,Object.defineProperty()方法 2, ES6新特性: 在对象中的函数/方法 :function是可以省略的 &l…

宝塔国际版Docker Manager 3.4获取镜像列表报错解决办法

宝塔国际版安装Docker Manager 3.4,遇到获取镜像列表的时候报错。 解决办法 找到:/www/server/panel/plugin/docker/docker_main.py文件 替换函数utc_to_local 原代码 # UTC时间转换为时间戳def utc_to_local(self, utc_time_str, utc_format=%Y-%m-%dT%H:%M:%S):

机器学习(五) -- 无监督学习(1) --聚类2

系列文章目录及链接 上篇:机器学习(五) -- 无监督学习(1) --聚类1 下篇: 前言 tips:标题前有“***”的内容为补充内容,是给好奇心重的宝宝看的,可自行跳过。文章内容被…

2个案例区分是平行眼还是交叉眼,以及平行眼学习方法

案例一: 交叉眼:看到凸出的“灌水”,是交叉眼。PS:看的时候,眼是斗鸡眼,眼睛易疲劳 平行眼:看到凹陷的“灌水”,是平行眼。PS:看的时候眼睛是平视,不容易疲…

springboot校园车辆管理系统-计算机毕业设计源码63557

校园车辆管理系统 摘 要 校园车辆管理系统是当前高校校园管理中的一个重要方面,其有效管理和调度对于提升校园的运行效率和管理水平至关重要。本论文基于Spring Boot框架开发了一套校园车辆管理系统,系统主要包括用户和管理员两大角色,涵盖…

Sprint Boot 2 核心功能(二)

数据访问 1、SQL 1.1、数据源的自动配置-HiKariDataSource 1.1.1、导入JDBC场景 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-jdbc</artifactId> </dependency>数据库驱动&#xff1…

什么是湖仓一体?湖仓一体解决了什么问题?

目录 一、数据仓库&数据湖&湖仓一体概念辨析 1.数据仓库&#xff08;Data Warehouse&#xff09; 2.数据湖&#xff08;Data Lake&#xff09; 3.湖仓一体&#xff08;Lakehouse&#xff09; 二、湖仓一体的优点 三、湖仓一体要解决什么问题? 四、结语 随着当前大数据…

在spyder中使用arcgis pro的包

历时2天终于搞定了 目标&#xff1a;在anconda中新建一个arcpyPro环境&#xff0c;配置arcgispro3.0中的arcpy 一、安装arcgispro3.0 如果安装完之后打开arcgispro3.0闪退&#xff0c;就去修改注册表&#xff08;在另一台电脑安装arcgispro遇到过&#xff09; 安装成功后可…

Python3网络爬虫开发实战(1)爬虫基础

一、URL 基础 URL也就是网络资源地址&#xff0c;其满足如下格式规范 scheme://[username:password]hostname[:port][/path][;parameters][?query][#fragment] scheme&#xff1a;协议&#xff0c;常用的协议有 Http&#xff0c;https&#xff0c;ftp等等&#xff1b; user…

如何借助生成式人工智能引领未来的科技狂潮

如何借助生成式人工智能引领未来的科技狂潮 1. 生成式AI的现状1.1 技术基础1.1.1 深度学习1.1.2 生成对抗网络&#xff08;GANs&#xff09;1.1.3 变分自编码器&#xff08;VAEs&#xff09; 1.2 主要应用1.2.1 语言模型1.2.2 图像生成1.2.3 音频与视频生成 2. 未来的发展趋势2…

DNS服务器的搭建

目录 1、DNS服务器端软件 2、DNS服务器搭建 第⼀步&#xff1a;环境准备 第二步&#xff1a;web主机的搭建 第三步&#xff1a;服务器端配置DNS 第四步&#xff1a;配置DNS主机 第五步&#xff1a; 检查配置文件是否正确 3、搭建完成 回到客户端测试 1、DNS服务器端软…

Java语言程序设计基础篇_编程练习题*15.21(拖动点)

*15.21(拖动点) 绘制一个圆&#xff0c;在圆上有三个随机点。连接这些点构成一个三角形。显示三角形中的角度。使用鼠标沿着圆的边拖动点。拖动的时候&#xff0c;三角形以及角度动态地重新显示&#xff0c;如图15-30b 所示。计算三角形角度的公式参考程序清单4-1 可以参考上…

SD换脸reactor

目前安装最复杂的插件 ReActor&#xff0c; 安装吐了&#xff0c;幸亏自己是屌丝程序员&#xff0c;插件是通过python写的&#xff0c;通过给源代码输出一些信息&#xff0c;最终定位问题&#xff0c;安装成功了。看看他的换脸效果. 图生图 重绘幅度为0 reactor 设置五官图像…

【Django】在vscode中运行调试Django项目(命令及图形方式)

文章目录 命令方式图形方式默认8000端口设置自定义端口 命令方式 python manage.py runserver图形方式 默认8000端口 设置自定义端口

vue3+vite 实现动态引入某个文件夹下的组件 - glob-import的使用

<template><div class"user-content"><HeaderTitle title"用户详情"></HeaderTitle><div class"main-content"><div><UserForm /></div><div><TableList></TableList></d…

基于Python的帕金森病人步态分析

目录 摘要一、引言1.背景知识2.实验目的和意义 二、实验方法1.实验环境2.实验步骤2.1 生成信号&#xff0c;进行手动傅里叶变换以及内置 FFT 函数傅里叶变换2.2 进行手动傅里叶变换以及内置 FFT 函数傅里叶变换2.3 基于傅里叶变换的步态信息分析2.4 基于傅里叶变换的卷积分析 3…

【事半功倍】视频素材播放之不二法门——倍速之法,无级变速

【事半功倍】视频素材播放之不二法门——倍速之法&#xff0c;无级变速 一、一般の三种方式1.1 原生H5 video1.2 Video.js1.3 动态切换播放速度 二、最佳设置三、效果 一、一般の三种方式 1.1 原生H5 video 对于原生HTML5 video 元素&#xff0c;你可以直接使用 playbackRate…

【算法刷题】【力扣】| 最长回文子串|

给你一个字符串 s&#xff0c;找到 s 中最长的 示例 1&#xff1a; 输入&#xff1a;s "babad" 输出&#xff1a;"bab" 解释&#xff1a;"aba" 同样是符合题意的答案。示例 2&#xff1a; 输入&#xff1a;s "cbbd" 输出&#x…

智慧学院智能化项目规划设计方案

1. 项目概况 智慧学院智能化项目规划旨在打造集人才培养、科学研究、技术创新等于一体的高端研究生院。项目占地面积广阔&#xff0c;包含教学、科研、学生宿舍、教师宿舍、公共服务和公共配套等多个功能区域。 2. 建设思想 建设思想强调投资合理、统一规划、立足现状、适度…

使用Python 机器学习-5-Python Mini Project–使用深度学习进行乳腺癌分类

一、前言 该文章仅作为个人学习使用 二、正文 项目源代码&#xff1a;Python 项目 - 使用深度学习进行乳腺癌分类 - DataFlair (data-flair.training) 数据集&#xff1a;乳腺组织病理学图像 |卡格尔 (kaggle.com) Python 中的乳腺癌分类项目 了解 Python 中乳腺癌分类项目中使…