Go基础编程 - 11 - 函数(func)

接口(interface)

    • 函数
      • 1. 函数定义
        • 1.1. 函数名
        • 1.2. 参数列表
        • 1.3. 返回值列表
      • 2. 匿名函数
      • 3. 闭包、递归
        • 3.1 闭包
          • 3.1.1 函数、引用环境
          • 3.1.2 闭包的延迟绑定
          • 3.1.3 goroutine 的延迟绑定
        • 3.2 递归函数
      • 4. 延迟调用(defer)
        • 4.1 defer特性及用途
        • 4.2 defer与闭包
        • 4.3 defer f.Close
        • 4.4. defer陷阱
          • 4.4.1. defer 与 closure
          • 4.4.1. defer nil 函数
      • 5. 高阶函数
      • 6. 异常处理

上一篇:接口(interface)
下一篇:流程控制


函数

Go语言函数的特点:

1. 无需声明原型
2. 支持不定变参
3. 支持多返回值
4. 支持命名返回参数
5. 函数也是一种类型,一个函数可以复制给变量;可以作为参数传递给其他函数
6. 不支持嵌套(一个包不能有重名的函数)
7. 不支持重载
8. 不支持默认参数

1. 函数定义

使用关键字 func 定义函数,左大括号不能另起一行。

func 函数名(参数列表)(返回值列表) { // 左侧大括号不能另起一行函数体
}
1.1. 函数名

函数名是函数的标识符,在Go语言中,函数名必须遵循标识符的命名规则。

1.2. 参数列表

参数列表在函数定义时指出。函数定义时的参数,称为函数的形参;当调用函数时,传递过来的变量就是函数的实参

  • 函数可以没有参数,也可以有多个参数,参数之间用逗号隔开。
  • 参数列表中,类型在变量名之后。
  • 类型相同的相邻参数,参数类型可合并。
  • 不定参数传值 就是函数的参数不是固定的,后面的类型是固定的; 可使用interface{}定义任意类型的不定参数。
  • 不定参数必须是参数列表中最后一个参数。
package mainimport "fmt"// 无参数
func sayHello() {fmt.Println("Hello, world!")
}// 相同类型的相邻参数,参数类型可合并
func add(x, y int) int {return x + y
}// 不定参数,为同一类型,用...表示;接收到的参数为切片类型
func sum(nums...int) int {// 参数nums为切片类型sum := 0for _, num := range nums {sum += num}return sum
}// 使用interface{}定义任意类型的不定参数,使用类型断言接收参数值。
func myFunc(args ...interface{}) {name, _ := args[0].(string)age, _ := args[1].(int)fmt.Printf("%s今年%d岁!", name, age)
}func main() {sayHello()fmt.Println(add(1, 2))fmt.Println(sum(1, 2, 3, 4, 5))fmt.Println(sum([]int{1, 2, 3}...)) // 使用slice做变参传入是,须使用“...”展开slicemyFunc("小明", 20)
}

值传递和引用传递
无论是值传递,还是引用传递,传递给函数的都是参数的副本。不过,值传递是值的copy,引用传递是地址的copy。
map、slice、chan、指针、interface默认以引用的方式传递。

package mainfunc modifyArray(arr [3]int) [3]int {for i := range arr {arr[i] = arr[i] * 10}return arr
}// 1.如果是对数组某个完整元素值的进行修改,那么原有实参数组不变;
// 2.如果是对数组某个元素(切片)内的某个元素的值进行修改,那么原有数据也会跟着改变;
// 传参可以理解为浅copy,参数本身的指针是不同的,但元素指针相同,对元素指针所指向的内容操作会影响到传参过程中的原始数据。
func modifyMultiArray(arr [3][]int) [3][]int {for i := range arr[0] {arr[0][i] = arr[0][i] * 10  // 实际修改的为arr[0]引用类型值的指针所指向的内存的值,原始实参元素指向同样内存,因此也改变原始实参数据。}arr[1][2] = 60arr[2] = []int{7, 8, 9} // 修改整个引用类型元素的值,实际是给arr[2]重新赋值了一个指向新slice的指针值,原始实参元素指向的内存并未改变,因此不影响原始实参数据。return arr
}func main() {arr := [3]int{1, 2, 3}arrRes := modifyArray(arr)fmt.Println(arr)    // [1 2 3],值传递函数内部修改并未改变arr变量fmt.Println(arrRes) // [10 20 30]arrSlice := [3][]int{{1, 2, 3},{4, 5, 6},}arrSlice1 := modifyMultiArray(arrSlice)fmt.Println(arrSlice)   // [[10 20 30] [4 5 60] []]fmt.Println(arrSlice1) // [[10 20 30] [4 5 60] [7 8 9]]
}

在这里插入图片描述

1.3. 返回值列表
  • 函数可以返回任意数量的返回值,返回值之间用逗号隔开,多返回值必须用括号。
  • 可以使用 “_” 标识符忽略函数的某个返回值。
  • Go语言返回值可以被命名,但不可与形参重名,且必须在函数体中使用;命名返回参数可看做与形参类似的局部变量,最后由 return 隐式返回。
  • 有返回值的函数,必须有明确的终止(return)语句,否则会引发编译错误。
  • Go语言不能使用容器接收多返回值,必须使用多个变量,或者“_”忽略。
package mainimport "fmt"func numbers() (int, int){ // 多返回值return 6, 8
}func add(x, y int) int { // 单个返回值,可省略括号return x + y
}func calc(a, b int) (sum int, avg int) {  // 命名返回值必须使用括号,且不可与形参重名 sum = a + bavg = (a + b) / 2return  
}func main() {//多返回值函数,必须使用多个变量接收,或“_”忽略。//var s = make([]int, 2)//s = calc(2, 4)	//报错:assignment mismatch: 1 variable but calc returns 2 valuessum, _ := calc(2, 4)fmt.Println(sum)    //6// 返回值作为其他函数调用实参fmt.Println(add(numbers()))
}

命名返回参数可被同名局部变量遮蔽,此时需要显式返回。

func add(x, y int) (sum int) {//var sum = 0 //同级代码块内变量不可重声明 Error:sum redeclared in this block{ //子代码块var sum = x + y// return   //不可使用隐式返回 Error:result parameter sum not in scope at returnreturn sum}return  // 隐式返回 0
}

命名返回参数允许 defer 延迟调用通过闭包读取和修改。

func calc(a, b int) (sum int, avg int) {defer func() {sum += 100}()sum = a + bavg = (a + b) / 2return
}func add(x, y int) int {var sum intdefer func() {sum += 100  // 修改无效}()sum = x + yreturn sum
}func main(){sum, avg := calc(6, 10)fmt.Println(sum, avg) // 116 8fmt.Println(add(2, 8)) // 10
}

2. 匿名函数

匿名函数由一个不带函数名的函数声明和函数体构成。优势是可以直接使用函数内的变量,不必申明。

package mainimport ("fmt""math"
)func main() {// Golang可以赋值给变量,做为结构字段,或在channel中传送// 变量getSqrt := func(a float64) float64 {return math.Sqrt(a)}fmt.Println(getSqrt(4))// collection cfn := []()func() string{func() string { return "hello" },func() string { return "world" },}// as fields := struct{fn func() string}{fn: func() string {return "hello"},}   fmt.Println(s.fn())// channelcf := make(chan func() string, 2)fc <- func() string { return "Say hello" }fmt.Println((<-fc)())
}

3. 闭包、递归

3.1 闭包

参考资料

3.1.1 函数、引用环境

闭包是有函数及其相关引用环境组合而成的实体(即:闭包=函数+引用环境)

**函数:**在闭包实际实现的时候,往往通过一个外部函数返回其内部函数来实现。内部函数可能是内部实名函数匿名函数或则一个lambda表达式

引用环境:

  • 在函数式语言中,当内嵌函数体内引用到函数体外的变量时,将会把定义时涉及到的引用环境和函数体打包成一个整体(闭包)返回。引用环境是指在程序执行中的某个点所有处于活跃状态的约束(一个变量的名称和其所代表的对象之间的联系)所组成的集合。
  • 由于闭包把函数和运行时的引用环境打包成一个新的整体,所以就解决了函数编程中的嵌套所引发的问题。当每次调用包含闭包的函数是都将返回一个新的闭包实例,这些实例之间是隔离的,分别包含调用时不同的引用环境现场。

闭包与外部函数的生命周期
内函数对外函数的变量的修改,是对变量的引用。变量被引用后,它所在的函数结束,这个变量也不会马上被销毁;相当于变相延长了函数的生命周期。

package mainimport "fmt"func incrIn(n int) func() int {fmt.Printf("%p, %d\n", &n, n)return func() int {n++ // 内函数对外函数的变量的修改,是对变量的引用fmt.Printf("%p, %d\n", &n, n)return n}
}func incr1(i *int) func() {// 自由变量为引用传递,闭包则不再封闭,修改全局可见的变量,也会对闭包内的这个变量造成影响。return func() {*i += 1fmt.Println(*i)}
}func incr2(i int) func() {return func() {i += 1fmt.Println(i)}
}func main() {n := incrIn(100)()fmt.Printf("%d\n\n", n)i := 100f1 := incr1(&i)f2 := incr2(i)f1() //101   f1() //102f2() //101f2() //102fmt.Println()i = 1000f1() //1001  f1() //1002f2() //103f2() //104fmt.Println()incr1(&i)() // 1003incr1(&i)() // 1004incr2(i)() // 1005  每次调用都返回独立的闭包实例,这些实例是隔离的incr2(i)() // 1005fmt.Println()
}
3.1.2 闭包的延迟绑定
func delay1(x int) []func() {var fns []func()data := []int{1, 2, 3}for _, val := range data {fns = append(fns, func() {fmt.Printf("%d + %d = %d\n", x, val, x+val)})}return fns
}func delay2() func() {x := 1fn := func() {fmt.Printf("x = %d\n", x)}x = 100return fn
}func main(){fns := delay1(100)for _, fn := range fns {fn()}// 输出:// 100 + 3 = 103// 100 + 3 = 103// 100 + 3 = 103delay2()()  // 100
}

上面代码解析:

闭包会保存相关引用的环境,也就是说变量在闭包的生命周期得到了保证;因此在执行闭包的时候,会去外部环境寻找最新的值。

delay1()返回的仅是闭包函数的定义,只有在执行fn()是在真正执行了闭包;执行时寻找最新的值3delay2可以更直观的看到,实际执行的为x最新值100

3.1.3 goroutine 的延迟绑定
func show(v interface{}) {fmt.Printf("show v: %v\n", v)
}func gor1() {data := []int{1, 2, 3}for _, v := range data {go show(v)}
}func gor2() {data := []int{1, 2, 3}for _, v := range data {go func() {fmt.Printf("gor2 v: %v\n", v)}()}
}var ch = make(chan int, 10)func gor3() {for v := range ch {go func() {fmt.Printf("gor 3 v: %v\n", v)  // 闭包, v为引用}()}
}func main() {gor1()  // goroutine执行顺序是随机的// 输出:// show v: 2// show v: 1// show v: 3gor2()// 输出:// gor2 v: 3// gor2 v: 3// gor2 v: 3go gor3()ch <- 1ch <- 2ch <- 3ch <- 4ch <- 11time.Sleep(time.Duration(1) * time.Nanosecond)ch <- 12time.Sleep(time.Duration(1) * time.Nanosecond)ch <- 13time.Sleep(time.Duration(1) * time.Nanosecond)ch <- 15// 输出:随机输出,大部分为11,个别为1~4// gor 3 v: 11// gor 3 v: 3// gor 3 v: 12// gor 3 v: 11// gor 3 v: 11// gor 3 v: 11// gor 3 v: 13// gor 3 v: 15time.Sleep(5 * time.Second)
}

上面代码解析:

gor2()内的匿名函数就是闭包(参考闭包内部函数的定义),v为引用,且延长了v的生命周期,在gor2()中for-loop的遍历几乎是“瞬时”完成的,goroutine真正被执行在其后。所以输出都为 3。

gor3()中,加入Sleep机制,使得goroutine在赋值前执行。输出结果与赋值及goroutine执行时v的实际值有关

3.2 递归函数

递归,就是在运行的过程中调用自己。一个函数调用自己,就叫递归函数。

package mainimport "fmt"func factorial(i int) int {if i <= 1 {return 1}return i * factorial(i-1)
}func main() {var i int = 7fmt.Printf("Factorial of %d is %d\n", i, factorial(i))
}

4. 延迟调用(defer)

4.1 defer特性及用途

defer 特性

  1. 关键字 defer 注册延迟调用。
  2. 延迟调用直到 return 前才被执行。因此可以用来做资源清理。
  3. 多个 defer 语句,按先进后出的方式执行。
  4. defer 语句中的变量,在 defer 声明时就已经决定了。

defer 用途

  1. 关闭文件句柄。
  2. 锁资源释放。
  3. 数据库连接释放。
package mainimport ("fmt""os"
)func main() {var whatever [3]struct{}for i := range whatever {defer fmt.Println(i)}//输出:// 2// 1// 0
}
4.2 defer与闭包

defer中使用的匿名函数依然是一个闭包。

package mainimport "fmt"func main() {var whatever [5]struct{}for i := range whatever {//函数正常执行,由于闭包用到的变量 i 在执行的时候已经变成4(i最新值),所以输出全都是4。defer func() { fmt.Println(i) }()}x, y := 1, 2defer func(a int) {fmt.Printf("x:%d,y:%d\n", a, y) // defer匿名函数为闭包, y为引用。}(x) // 复制 x 的值x += 100y += 100fmt.Println(x, y)fmt.Println()// 输出:// 101 202// x:1,y:202// 4// 4// 4// 4// 4
}
4.3 defer f.Close
package mainimport "fmt"type Test struct {name string
}func (T *Test) Close() {fmt.Println(T.name, "closed")
}func Closure() {//delay5()ts := []Test{{"a"}, {"b"}, {"c"}}for _, t := range ts {// defer 后面的语句在执行的时候,函数调用的参数会被保存起来,但不执行,也就是复制了一份。// 方式1defer t.Close()// 方式2tt := t // tt为内函数变量,不受外部函数变量改变影响。defer tt.Close()}// 方式1 输出:// c closed// c closed// c closed// 方式2 输出:// c closed// b closed// a closed
}
4.4. defer陷阱
4.4.1. defer 与 closure
package mainimport ("errors""fmt"
)func foo(a, b int) (i int, err error) {// 如果 defer 后面跟的不是一个闭包(closure),最后执行的时候我们得到的并不是最新的值。defer fmt.Printf("first defer err:%v\n", err)  // 非闭包defer func(err error) {fmt.Printf("second  defer err:%v\n", err) // 非闭包 }(err)defer func() {fmt.Printf("third  defer err:%v\n", err)   // 闭包}()if b == 0 {err = errors.New("divided by zero")return}i = a / breturn
}func main() {foo(8, 0)// 输出// third  defer err:divided by zero// second  defer err:<nil>// first defer err:<nil>
}
4.4.1. defer nil 函数
package mainimport ("fmt"
)func test() {var run func() = nildefer run()fmt.Println("runs")
}func main() {defer func() {if err := recover(); err != nil {fmt.Println(err)}}()test()// 输出// runs// runtime error: invalid memory address or nil pointer dereference
}

test函数运行结束,然后defer函数会被执行,且因为值为nil而产生panic异常。要注意的是,run()的声明是没有问题,因为在test函数执行完成后它才会被调用。

5. 高阶函数

高阶函数满足下面两个条件:

  1. 接受其他的函数作为参数传入
  2. 把其他的函数作为结果返回

函数类型
函数类型属于引用类型,它的值可以为nil,零值为nil。

package main// 函数类型声明
type operate func (x, y int) intfunc Calc(x, y int, op operate) (int, error) {if op == nil {return 0, errors.New("invalid operation")}return op(x, y), nil
}func getCalc(op operate) func(x, y int) (int, error) {return func(x, y int) (int, error) {if op == nil {return 0, errors.New("invalid operation")}return op(x, y), nil}
}func main() {var op operatefmt.Printf("%T, %#v", op, op) // main.operate, (main.operate)(nil)op = func(x, y int) int { return x + y }n, _ := Calc(100, 100, op)fmt.Println(n) // 200add := getCalc(op)v, err := add(10, 10)if err != nil {fmt.Println(err)} else {fmt.Println(v) // 20}
}

6. 异常处理

Go语言没有结构化异常,使用panic函数来抛出异常,recover捕获异常。
panic、recover 参数类型为interface{},可以处理任意类型。

  • panicrecover 参数类型为 interface{},可以处理任意类型。
  • 利用 recover 处理 panic 指令,defer 必须放在 panic 之前定义。
  • recover 只有在 defer 调用的函数中才有效,否则当 panic 时,recover 无法捕获到 panic,无法防止 panic 扩散。
  • recover 处理异常后,逻辑并不会回复到 panic 那个点去,函数跑到 defer 之后的那个点。
  • 多个 defer 会形成 defer 栈,后定义的 defer 语句会被最先调用。
package mainimport ("fmt"
)func demo1() {defer func() {// 验证是否有panicif err := recover(); err != nil {fmt.Println("报错:", err)}}()ch := make(chan int, 10)close(ch)ch <- 1 // 向已关闭的通道发送数据,引发panic
}func demo2() {defer func() {fmt.Println("报错:", recover())}()defer func() {// defer 中引发的错误,可以被后续延迟调用捕获,但仅最后一个错误可被捕获。panic("defer panic")}()panic("code panic")
}func main() {demo1() //报错: send on closed channeldemo2() //报错: defer panic
}

recover函数只有在defer内直接调用才会终止错误,否则返回nil。任何未捕获的错误都会沿用堆栈向外传递


func except() {fmt.Println("函数输出错误:", recover())
}// recover 只有在 defer 调用的函数中才有效。
func main() {defer except()  // 有效defer func() {  // 有效fmt.Println("报错:", recover())panic("again panic")}()defer recover() // 无效 nildefer fmt.Println("无效:", recover()) // 无效 nildefer func() {func() {fmt.Println("defer:", recover()) // 无效 nil}()}()panic("panic error!")// 输出// defer: <nil>// 报错: panic error!// 函数输出错误: again panic// 无效: <nil>
}

常用的异常处理方式

  • 保护代码段,将代码块重构成匿名函数。
func div1(x, y int) int {var z intfunc() {defer func() {if recover() != nil {z = 0}}()if y == 0 {panic("division by zero")}z = x / y}()return z
}
func main() {fmt.Println(div1(100, 10))  // 0fmt.Println(div1(100, 0))   // 10    fmt.Println()
}
  • 除用 panic 引发中断性错误外,还可返回 error 类型错误对象来表示函数调用状态.
    标准库 errors.Newfmt.Errorf 函数用于创建实现 error 接口的错误对象,通过判断错误对象实例来确定具体错误类型。

如何区别使用 panicerror导致关键流程出现不可修复性错误使用 panic,其它使用 error

var errDivZero = errors.New("division by zero")func div(x, y int) (int, error) {if y == 0 {return 0, errDivZero}return x / y, nil
}func main() {defer func() {fmt.Println("错误:", recover())}()switch z, err := div(100, 0); err {case nil:fmt.Println("结果:", z)case errDivZero:panic(err)}
}
  • Go 实现类似 try catch
func Try(fn func(), handler func(interface{})) {defer func() {if err := recover(); err != nil {handler(err)}}()fn()
}func main() {Try(func() {panic("Try panic")}, func(err interface{}) {fmt.Println(err)})
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/49129.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

个性化IT服务探索实践

探索和实践个性化IT服务,可以为用户提供更优质、定制化的解决方案,从而提升用户体验和满意度。以下是一些具体的步骤和建议,帮助自己在未来探索和实践个性化IT服务。 一、了解用户需求 用户调研和反馈: 进行用户调研,了解用户的需求和痛点。收集用户反馈,通过问卷、采访…

逆向破解 对汇编的 简单思考

逆向破解汇编非常之简单 只是一些反逆向技术非常让人难受 但网络里都有方法破解 申请变量 &#xff1a; int a 0; 00007FF645D617FB mov dword ptr [a],0 char b b; 00007FF645D61802 mov byte ptr [b],62h double c 0.345; 00007FF645D61…

2024-07-22 Unity AI行为树1 —— 框架介绍

文章目录 1 行为树2 行为树驱动方式3 行为树结点分类3.1 控制节点3.2 执行节点 4 行为树与状态机比较 本文章参考 B 站唐老狮 2023年直播内容。 点击前往唐老狮 B 站主页。 1 行为树 ​ 行为树&#xff08;Behavior Tree&#xff0c;BT&#xff09;在游戏 AI 中是一种用于控制…

微软蓝屏事件:网络安全与系统稳定性的反思与前瞻

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

探索深度学习在图像识别领域的创新应用

摘要&#xff1a; 本文深入探讨了深度学习在图像识别领域的最新进展和创新应用。通过对卷积神经网络&#xff08;CNN&#xff09;等模型的研究&#xff0c;分析了其在人脸识别、物体检测和场景理解等方面的卓越表现&#xff0c;并展望了未来深度学习技术在图像识别领域的发展趋…

javascript 的执行上下文与作用域

目录 1. 初步了解 上下文&#xff08;context&#xff09;2. 全局上下文(global context)3. 上下文栈 (context stack)4. 作用域链( scope chain)5. 作用域(scope)6. 作用域链增强7. 变量声明7.1 var 声明变量7.2 let 声明变量7.3 const 常量声明 1. 初步了解 上下文&#xff0…

React前端面试每日一试 2.JSX是什么?JSX如何工作?

JSX是什么&#xff1f; JSX&#xff08;JavaScript XML&#xff09;是React引入的一种语法扩展&#xff0c;用于在JavaScript中编写类似HTML的结构。它让我们能够直观地描述UI的结构&#xff0c;同时保留JavaScript的编程能力。尽管JSX看起来像HTML&#xff0c;但它最终会被编…

轨迹优化 | 基于ESDF的共轭梯度优化算法(附ROS C++/Python仿真)

目录 0 专栏介绍1 数值优化&#xff1a;共轭梯度法2 基于共轭梯度法的轨迹优化2.1 障碍约束函数2.2 曲率约束函数2.3 平滑约束函数 3 算法仿真3.1 ROS C实现3.2 Python实现 0 专栏介绍 &#x1f525;课程设计、毕业设计、创新竞赛、学术研究必备&#xff01;本专栏涉及更高阶的…

Unity3D UGUI适配不同分辨率详解

前言 在Unity3D开发中&#xff0c;UGUI&#xff08;Unitys Graphical User Interface&#xff09;是构建用户界面&#xff08;UI&#xff09;的重要工具。然而&#xff0c;随着移动设备和桌面设备的分辨率日益多样化&#xff0c;确保UI能够在不同分辨率下良好显示变得尤为重要…

CAS乐观锁原理

1、什么是CAS&#xff1f; compare and swap也就是比较和交换&#xff0c;他是一条CPU的并发原语。 他在替换内存的某个位置的值时&#xff0c;首先查看内存中的值与预期值是否一致&#xff0c;如果一致&#xff0c;执行替换操作。 这个操作是一个原子性操作。 Java中基于Un…

手机免费恢复照片的软件有哪些?这2个工具来帮忙

照片是我们情感的载体&#xff0c;是记忆的碎片。它们无声地诉说着过去的故事&#xff0c;记录着生活中的点点滴滴。但意外常常是突如其来的&#xff0c;当发现手机照片丢失时&#xff0c;我们往往心痛不已。 不用担心&#xff0c;这场看似绝望的危机&#xff0c;实则有解决之…

C++ OpenCV 实现多张图片叠加 叠加文字

C OpenCV 实现多张图片叠加 叠加文字 在C中使用OpenCV叠加多张图片以及添加文字的基本步骤如下&#xff1a; 加载多张图片。 确定叠加位置。 使用cv::addWeighted叠加图片&#xff0c;可以为叠加的图片添加透明度。 使用cv::putText在图片上添加文字。 显示或保存结果图片…

Sql Server缓冲池、连接池等基本知识(附Demo)

目录 前言1. 缓存池2. 连接池3. 彩蛋 前言 基本的知识推荐阅读&#xff1a; java框架 零基础从入门到精通的学习路线 附开源项目面经等&#xff08;超全&#xff09;Mysql优化高级篇&#xff08;全&#xff09;Mysql底层原理详细剖析常见面试题&#xff08;全&#xff09; 1…

Go 环境安装配置

1、下载 wget https://go.dev/dl/go1.21.6.linux-amd64.tar.gz 2、安装 sudo tar -xvf go1.21.6.linux-amd64.tar.gz -C $HOME/3、设置环境变量及代理 # 打开 ~/.bash_profile,输入&#xff1a; export PATH$PATH:$HOME/go/bin # 设置 Go 语言代理 export GOPROXYhttps://go…

AI发展下的伦理挑战

AI发展下的伦理挑战&#xff0c;应当如何应对&#xff1f; 人工智能飞速发展的同时&#xff0c;也逐渐暴露出侵犯数据隐私、制造“信息茧房”等种种伦理风险。随着AI技术在社会各个领域的广泛应用&#xff0c;关于AI伦理和隐私保护问题日趋凸显。尽管国外已出台系列法规来规范…

ls lsattr lsblk lscpu lsdiff lshw lsinitrd lsipc lslocks lslogins

ls: 描述&#xff1a;列出目录内容。用法&#xff1a;ls [选项] [文件或目录]示例&#xff1a; ls&#xff1a;列出当前目录的文件和子目录。ls -l&#xff1a;以详细列表形式显示目录内容。ls /path/to/directory&#xff1a;列出指定路径下的内容。 lsattr: 描述&#xff1a;…

【VSCode】安装 【ESP-IDF】插件及【ESP32-S3】新建工程和工程配置

一、搭建基础工程 二、基础工程的文件架构解析 三、调试相关工具介绍 1、串口下载2、JTAG 下载与调试 四、工程的文件架构解析 五、基础工程配置 一、搭建基础工程 在 VS Code 中新建 ESP-IDF 基础工程的步骤如下&#xff1a; 1、启动 VS Code 并打开命令面板 按下“Ctrl…

逆向案例二十八——某高考志愿网异步请求头参数加密,以及webpack

网址&#xff1a;aHR0cDovL3d3dy54aW5nYW9rYW90Yi5jb20vY29sbGVnZXMvc2VhcmNo 抓包分析&#xff0c;发现请求头有参数u-sign是加密的&#xff0c;载荷没有进行加密&#xff0c;直接跟栈分析。 进入第二个栈&#xff0c;打上断点&#xff0c;分析有没有加密位置。 可以看到参数…

Chapter17 表面着色器——Shader入门精要学习

Chapter17 表面着色器 一、编译指令1.表面函数2.光照函数3.其他可选参数 二、两个结构体1.Input 结构体&#xff1a;数据来源2.SurfaceOutput 三、Unity背后做了什么四、表面着色器的缺点 一、编译指令 作用&#xff1a;指明该表面着色器的 表面函数 和 光照函数&#xff0c;并…

【React】深入探索React:表单控制、组件通信、副作用管理、自定义Hook

一、React表单控制 表单控制是React应用中常见的需求&#xff0c;React Hooks提供了两种方式来实现&#xff1a;受控组件和非受控组件。 1.1 受控组件 受控组件是将表单输入的值保存在组件的状态中。这样&#xff0c;表单数据就完全由React控制。 import React, { useState…