图论模型-迪杰斯特拉算法和贝尔曼福特算法★★★★

该博客为个人学习清风建模的学习笔记,部分课程可以在B站:【强烈推荐】清风:数学建模算法、编程和写作培训的视频课程以及Matlab等软件教学_哔哩哔哩_bilibili

目录

​1图论基础

1.1概念

1.2在线绘图

1.2.1网站

1.2.2MATLAB

1.3无向图的权重邻接矩阵 

1.4有向图的权重邻接矩阵

2迪杰斯特拉算法

2.1概念

2.2步骤

2.3问题

3贝尔曼福特算法

3.1概念

3.2负权回路

3.3代码

3.3.1计算最短路径

3.3.2返回任意两点的距离矩阵

3.3.3找给定范围内所有的点 

3.3.4示例代码 

 4总结


名称重要性难度
图论最短路径求解:迪杰斯特拉算法和贝尔曼福特算法★★★★★★★

1图论基础

1.1概念

图论中的图( Graph )是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事
物间具有这种关系。
一个图可以用数学语言描述为 G(V(G),E(G)) V(vertex) 指的是图的顶点集,E(edge) 指的是图的边集。
根据边是否有方向,可将图分为有向图和无向图。
另外,有些图的边上还可能有权值,这样的图称为有权图。

1.2在线绘图

1.2.1网站

https://csacademy.com/app/graph_editor/

1.2.2MATLAB

注:( 1 Matlab 做出来的图不是很漂亮,要是节点比较少,还是推荐大家使用在线作图。 2 )该函数在 2015b 之后的版本才支持,如果运行出错请下载新版本 Matlab

代码全部摘自清风老师: 

%% 注意:以下代码需要较新版本的matlab才能运行(最好是2016版本及以上哦)
% 如果运行出错请下载新版的matlab代码再运行%% Matlab作无向图
% (1)无权重(每条边的权重默认为1)
% 函数graph(s,t):可在 s 和 t 中的对应节点之间创建边,并生成一个图
% s 和 t 都必须具有相同的元素数;这些节点必须都是从1开始的正整数,或都是字符串元胞数组。
s1 = [1,2,3,4];
t1 = [2,3,1,1];
G1 = graph(s1, t1);
plot(G1)
% 注意哦,编号最好是从1开始连续编号,不要自己随便定义编号
s1 = [1,2,3,5];
t1 = [2,3,1,1];
G1 = graph(s1, t1);
plot(G1)% 注意字符串元胞数组是用大括号包起来的哦
s2 = {'学校','电影院','网吧','酒店'};
t2 = {'电影院','酒店','酒店','KTV'};
G2 = graph(s2, t2);
plot(G2, 'linewidth', 2)  % 设置线的宽度
% 下面的命令是在画图后不显示坐标
set( gca, 'XTick', [], 'YTick', [] );  % (2)有权重
% 函数graph(s,t,w):可在 s 和 t 中的对应节点之间以w的权重创建边,并生成一个图
s = [1,2,3,4];
t = [2,3,1,1];
w = [3,8,9,2];
G = graph(s, t, w);
plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) 
set( gca, 'XTick', [], 'YTick', [] );  %% Matlab作有向图
% 无权图 digraph(s,t)
s = [1,2,3,4,1];
t = [2,3,1,1,4];
G = digraph(s, t);
plot(G)
set( gca, 'XTick', [], 'YTick', [] );  % 有权图 digraph(s,t,w)
s = [1,2,3,4];
t = [2,3,1,1];
w = [3,8,9,2];
G = digraph(s, t, w);
plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) 
set( gca, 'XTick', [], 'YTick', [] );  

1.3无向图的权重邻接矩阵 

Inf指代权重为无穷

1.4有向图的权重邻接矩阵

2迪杰斯特拉算法

2.1概念

算法讲解视频地址:
https://www.bilibili.com/video/av54668527

2.2步骤

2.3问题

按照该算法,从1到2的最短路径为2,路径为1\rightarrow 2,但实际从1\rightarrow 3\rightarrow 2的距离为1,才是真正的最短路径。

3贝尔曼福特算法

3.1概念

为了解决迪杰斯特拉算法不能应用于负权重问题,引入贝尔曼福特算法。

该算法不支持含有负权回路的图。

 有兴趣的同学可以参考下面两份资料弄懂其实现原理:

https://blog.csdn.net/a8082649/article/details/81812000
https://www.bilibili.com/video/av43217121

3.2负权回路

含有负权重的无向图都是负权回路

3.3代码

3.3.1计算最短路径

Method可选参数
选项说明
'auto' 默认值)
'auto'  选项会自动选择算法:
'unweighted'  用于没有边权重的 graph  digraph  输入。
'positive'  用于具有边权重的所有 graph  输入,并要求权
重为非负数。此选项还用于具有非负边权重的 digraph 
入。
'mixed'  用于其边权重包含某些负值的 digraph  输入。图
不能包含负循环。
'unweighted'
广度优先计算,将所有边权重都视为 1
'positive' 
Dijkstra 算法,要求所有边权重均为非负数。
'mixed' 仅适用于 digraph即有向图
适用于有向图的 Bellman‐Ford  算法,要求图没有负循环。
尽管对于相同的问题, 'mixed'  的速度慢于 'positive' ,但
'mixed'  更为通用,因为它允许某些边权重为负数。

3.3.2返回任意两点的距离矩阵

3.3.3找给定范围内所有的点 

3.3.4示例代码 

代码全部摘自清风老师

%% 注意:以下代码需要较新版本的matlab才能运行(最好是2016版本及以上哦)
% 如果运行出错请下载新版的matlab代码再运行% 注意哦,Matlab中的图节点要从1开始编号,所以这里把0全部改为了9
% 编号最好是从1开始连续编号,不要自己随便定义编号
s = [9 9 1 1 2 2 2 7 7 6 6  5  5 4];
t = [1 7 7 2 8 3 5 8 6 8 5  3  4 3];
w = [4 8 3 8 2 7 4 1 6 6 2 14 10 9];
G = graph(s,t,w);
plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) 
set( gca, 'XTick', [], 'YTick', [] );  
[P,d] = shortestpath(G, 9, 4)  %注意:该函数matlab2015b之后才有哦% 在图中高亮我们的最短路径
myplot = plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2);  %首先将图赋给一个变量
highlight(myplot, P, 'EdgeColor', 'r')   %对这个变量即我们刚刚绘制的图形进行高亮处理(给边加上r红色)% 求出任意两点的最短路径矩阵
D = distances(G)   %注意:该函数matlab2015b之后才有哦
D(1,2)  % 1 -> 2的最短路径
D(9,4)  % 9 -> 4的最短路径% 找出给定范围内的所有点  nearest(G,s,d)
% 返回图形 G 中与节点 s 的距离在 d 之内的所有节点
[nodeIDs,dist] = nearest(G, 2, 10)   %注意:该函数matlab2016a之后才有哦

 4总结

该章节主要是为了解决图论中最短路径问题的两种算法,迪杰斯特拉算法是基于贪心思想的一种算法,但是不能够解决含有负权值的问题,而贝尔曼福特算法可以解决迪杰斯特拉算法的不足,但是同样不能解决含有负权回路的最短路径问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/48853.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

15现代循环神经网络—GRU与LSTM

目录 1.门控循环单元 GRU关注一个序列门候选隐状态(candidate hidden state)隐状态总结从零开始代码实现代码简洁实现2.长短期记忆网络 LSTM门候选记忆单元(candidate memory cell)记忆单元隐状态代码1.门控循环单元 GRU GRU 是最近几年提出来的,在 LSTM 之后,是一个稍微简…

关于 windows系统中双精度double除法编译优化导商变量不变化(代码调整+volatile) 的解决方法

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/140592209 红胖子(红模仿)的博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软…

Python爬虫(2) --爬取网页页面

文章目录 爬虫URL发送请求UA伪装requests 获取想要的数据打开网页 总结完整代码 爬虫 Python 爬虫是一种自动化工具,用于从互联网上抓取网页数据并提取有用的信息。Python 因其简洁的语法和丰富的库支持(如 requests、BeautifulSoup、Scrapy 等&#xf…

基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF.仿真输出误差收敛曲线和误差协方差收敛曲线。 2.测试软件版本以及运行结果展示 MATLAB2022…

springboot 配置 spring data redis

1、在pom.xml引入父依赖spring-boot-starter-parent&#xff0c;其中2.7.18是最后一版支持java8的spring <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.18</…

助燃新质生产力,魔珐科技亮相IMC2024制造业数字科技大会展示有言AIGC视频工具价值

2024年7月19日&#xff0c;IMC2024第八届制造业数字科技大会在上海盛大开幕&#xff0c;本次大会以《向“智”而行》为主题&#xff0c;250智能制造行业数字化转型企业、行业领军者及实践者共聚一堂&#xff0c;共同助力企业增强技术“硬核力”&#xff0c;为新质生产力蓄势赋能…

buuctf web 第五到八题

[ACTF2020 新生赛]Exec 这里属实有点没想到了&#xff0c;以为要弹shell&#xff0c;结果不用 127.0.0.1;ls /PING 127.0.0.1 (127.0.0.1): 56 data bytes bin dev etc flag home lib media mnt opt proc root run sbin srv sys tmp usr var127.0.0.1;tac /f*[GXYCTF2019]Pin…

最新全新UI异次元荔枝V4.4自动发卡系统源码

简介&#xff1a; 最新全新UI异次元荔枝V4.4自动发卡系统源码 更新日志&#xff1a; 1增加主站货源系统 2支持分站自定义支付接口 3目前插件大部分免费 4UI页面全面更新 5分站可支持对接其他分站产品 6分站客服可自定义 7支持限定优惠 图片&#xff1a; 会员中心截图&…

多类支持向量机损失(SVM损失)

(SVM) 损失。SVM 损失的设置是&#xff0c;SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。 即假设有一个分数集合s[13,−7,11] 如果y0为真实值&#xff0c;超参数为10&#xff0c;则该损失值为 超参数是指在机器学习算法的训练过程中需要设置的参数&#xf…

学习并测试SqlSugar的单库事务功能

SqlSugar支持单库事务、多租户事务、多库事务&#xff0c;本文学习并测试单库事务的基本用法。   使用SqlSugarClient类、ISqlSugarClient接口都可以创建SqlSugarClient数据库操作实例&#xff0c;其区别在于&#xff0c;针对单库而言&#xff0c;SqlSugarClient类支持调用Be…

【python】NumPy运行报错分析:IndexError——数组索引越界问题

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

matlab simulink气隙局部放电仿真技术研究

1、内容简介 略 87-可以交流、咨询、答疑 2、内容说明 略 为了解决目前国内外局部放电仿真方法难以计算气隙局部放电暂态过程的问题 , 利用 MATLAB (SIMULINK ) 的公共模块库和电力系统专业模块库 , 根据单气隙局部放电仿真物理模型 , 构造了气隙局部放 电仿真计算的电…

树状数组优化dp

这个题目怎么去想呢&#xff0c;我们先构造前缀和&#xff0c;一般思路肯定是用两层循环&#xff0c;但是一定会超时&#xff0c;我们的数据范围是 1e5&#xff0c;那我们必须找到复杂度为 nlog n 的才行&#xff0c;所以我们可以考虑每次计算以 i 结尾的子数组的数量&#xff…

移动硬盘在苹果电脑上使用后在windows中无法读取 Win和Mac的硬盘怎么通用

在日益普及的跨平台工作环境中&#xff0c;苹果电脑与Windows PC之间的数据交换成为日常需求。然而&#xff0c;用户常面临一个困扰&#xff1a;为何苹果电脑的硬盘能在macOS下流畅运行&#xff0c;却在Windows系统中变得“水土不服”&#xff1f;这一问题核心在于硬盘格式的不…

MT19937

MT19937 文章目录 MT19937题型1 逆向extract_number[SUCTF2019]MT 题型2 预测随机数[GKCTF 2021]Random 题型3逆向twist[V&N2020 公开赛]Backtrace 题型4 逆向init扩展题型WKCTF easy_random 现成模块randcrack库Extend MT19937 Predictor库 MT19937是一种周期很长的伪随机…

安全防御:过滤技术

目录 一、URL过滤 URL过滤的方式 二、HTTP与HTTPS HTTP协议获取URL的方式 HTTP协议做控制管理的流程 HTTPS 1&#xff0c;配置SSL的解密功能 2&#xff0c;直接针对加密流量进行过滤 需求&#xff1a; 三、DNS过滤 四、内容过滤 文件过滤技术 文件过滤技术的处理流…

抖音私信卡片制作教程,使用W外链创建抖音/快手/小红书卡片

在数字营销和社交媒体日益繁荣的今天&#xff0c;利用外部链接&#xff08;W外链平台&#xff09;为抖音平台创建卡片已成为一种有效的推广手段。抖音卡片不仅可以直接将观众导向目标网页或产品&#xff0c;还能提高用户的参与度和品牌的曝光度。下面&#xff0c;我们将详细介绍…

java-selenium 截取界面验证码图片并对图片文本进行识别

参考链接 1、需要下载Tesseract工具并配置环境变量&#xff0c;步骤如下 Tesseract-OCR 下载安装和使用_tesseract-ocr下载-CSDN博客 2、需要在IDEA中导入tess4j 包&#xff1b;在pom.xml文件中输入如下内容 <!--导入Tesseract 用于识别验证码--><dependency>&l…

微信小程序开发:基础架构与配置文件

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…