普中51单片机:LED点阵屏组成结构及实现方法详解(九)

在这里插入图片描述

文章目录

  • 引言
  • 什么是LED点阵屏?
  • 工作原理
  • 74HC595移位寄存器
    • 基本引脚作用
    • 级联工作原理
  • 电路图
  • 代码演示——16*16LED点阵屏轮播点亮每行LED
  • 代码演示——显示数字0
  • 代码演示——16*16游动字幕显示

引言

LED点阵屏作为一种广泛应用于现代显示技术的设备,因其能够高效、清晰地展示文字、图形和视频内容而备受青睐。它们在广告宣传、公共信息发布、交通指引、舞台背景等领域具有重要作用。本文将详细介绍LED点阵屏的工作原理、组成结构及其实现方法,以16x16点阵屏为例进行具体说明,并展示如何通过编程实现LED点阵屏的控制与显示。

什么是LED点阵屏?

LED点阵屏是一种由多个LED(发光二极管)组成的显示设备,通过控制每个LED的亮灭来实现图像和文字的显示。常见的LED点阵屏规格有8x8、16x16等,本文以16x16点阵屏为例进行讲解。根据颜色的不同,LED点阵屏可以分为单色、双色和全彩三种类型,分别适用于不同的应用场景。
在这里插入图片描述

工作原理

LED点阵屏的核心在于如何控制每个LED的亮灭。通常使用行列扫描的方法,通过快速切换行和列的电流来点亮特定的LED。为了实现这一点,常用的控制芯片包括74HC595移位寄存器和MAX7219驱动芯片。利用行线和列线的交叉点上的LED,通过编程控制这些LED的亮灭来实现图像的显示。例如,当某一行电平被拉高,某一列电平被拉低时,对应交叉点的LED就会点亮。需要进行逐行或逐列扫描,利用人眼的余晖效应进行显示。

LED点阵屏的结构类似于数码管,只不过是数码管把每一列的像素以'8'字型排列而已。LED点阵与数码管一样,有共阴极和共阳级两张接法,不同的接法对应的电路结构不同。

  1. 共阳极:所有的LED阳极(正极)连接在一起,通常接到电源正极。点亮某个段时,需将相应的段的阴极(负极)接地 GND。
  2. 共阴极:所有的LED阴极(负极)连接在一起,通常接地。点亮某个段时,需将相应的段的阳极(正极)接电源正极。

在之前第四章数码管也提到的对应讲解:普中51单片机:数码管显示原理与实现详解(四)

74HC595移位寄存器

74HC595是一种常用的串行输入并行输出移位寄存器。它可以将串行数据转换为并行数据,从而控制多个LED。通过级联多个74HC595,可以控制更大规模的LED矩阵。LED点阵屏因为需要多个IO引脚,所以需要使用到74HC595芯片。

基本引脚作用

74HC595移位寄存器有三个主要引脚用于数据传输:

  • DS(数据输入):串行数据输入引脚。(引脚14)
  • SH_CP(移位时钟):每次时钟脉冲时,数据向移位寄存器中移位一位。(引脚11)
  • ST_CP(存储时钟):将移位寄存器中的数据锁存到输出寄存器中。(引脚12)

此外,还有一个 OE(输出使能) 13引脚,用于控制输出是否有效。具体根据电路图上的引脚序号进行查看和说明。在此博客中对74HC595芯片进行的讲解:深入解析74HC595移位寄存器的工作原理

级联工作原理

本次采用的时候16*16LED点阵屏作为演示,所以需要用到级联,级联工作原理与单独595芯片类似,主要分为四个步骤:

  1. 数据输入:数据通过串行输入引脚(SER)输入到第一个74HC595芯片的移位寄存器中。每个时钟脉冲(SCK)的上升沿会使移位寄存器中的数据向左移动一位,新的数据从SER输入。
  2. 数据移位:在每个时钟脉冲的上升沿,移位寄存器中的数据向左移动一位,新的数据从SER输入并进入移位寄存器的最低位。当移位寄存器填满8位数据后,继续输入的数据会从移位寄存器的最后一个位(Q7)挤出,并从串行数据出口引脚(引脚9)输出。
  3. 级联连接:将第一个74HC595芯片的串行数据出口引脚(引脚9)连接到下一个74HC595芯片的串行数据输入引脚(SER)。这样,第一个芯片移位寄存器中的数据在填满后,会自动通过引脚9传递到下一个芯片的移位寄存器中,形成级联。可以继续将下一个74HC595芯片的串行数据出口引脚连接到再下一个芯片的串行数据输入引脚,以此类推,实现多级级联。
  4. 数据锁存:当需要将移位寄存器中的数据输出到并行输出引脚时,通过输出寄存器时钟引脚(RCLK)提供一个上升沿的时钟信号。在RCLK的上升沿,移位寄存器中的数据被锁存到输出寄存器中,并通过并行输出引脚(Q0-Q7)输出。

通常将OE引脚接地(GND),确保输出引脚始终处于使能状态。低电平时使能输出,高电平时禁止输出。

电路图

博主使用的是四个74HC595芯片操作的LED点阵,操作原理相同,由74HC595电路图和LED点阵屏1616电路图可知第三片和第四片的74HC595芯片(级联)用于控制LED点阵屏1616的每一列的阴极(系统默认连接),行需要自行进行连接(第一片控制前八行的阳极,第二片控制后八行的阳极)。

  • LED点阵屏16*16电路图

在这里插入图片描述

  • 74HC595电路图

在这里插入图片描述

代码演示——16*16LED点阵屏轮播点亮每行LED

主函数中的两个循环分别控制LED点阵的前8行和后8行。每个循环中的 hc595_write_data 调用负责发送行数据和清零数据,以实现行的控制。

#include <REGX52.H>sbit SRCLK = P3^6;
sbit RCK = P3^5;
sbit SEK = P3^4;void DelayXms(unsigned int xms)	//@12.000MHz
{unsigned char data i, j;while(xms){i = 2;j = 239;do{while (--j);} while (--i);xms--;}
}void hc595_write_data(unsigned char dat1,unsigned char dat2,unsigned char dat3,unsigned char dat4)
{int i = 0;//第四片595for(i = 0;i < 8;i++){SEK = dat4>>7;dat4<<=1;SRCLK = 0;DelayXms(1);SRCLK = 1;//产生上升沿,进行移位DelayXms(1);}//第三片595for(i = 0;i < 8;i++){SEK = dat3>>7;dat3<<=1;SRCLK = 0;DelayXms(1);SRCLK = 1;//产生上升沿,进行移位DelayXms(1);}//第二片595for(i = 0;i < 8;i++){SEK = dat2>>7;dat2<<=1;SRCLK = 0;DelayXms(1);SRCLK = 1;//产生上升沿,进行移位DelayXms(1);}//第一片595for(i = 0;i < 8;i++){SEK = dat1>>7;dat1<<=1;SRCLK = 0;DelayXms(1);SRCLK = 1;//产生上升沿,进行移位DelayXms(1);}RCK = 0;SRCLK = 1;//产生上升沿,进行存储输出RCK = 1;
}unsigned char hc595_arrbuf[] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};void main()
{unsigned int i = 0;while(1){for(i = 0;i < 8;i++)//1到8行{hc595_write_data(hc595_arrbuf[i],0x00,0x00,0x00);DelayXms(1000);		hc595_write_data(0x00,0x00,0x00,0x00);}for(i = 0;i < 8;i++)//8到16行{hc595_write_data(0x00,hc595_arrbuf[i],0x00,0x00);DelayXms(1000);		hc595_write_data(0x00,0x00,0x00,0x00);}}
}

代码演示——显示数字0

这段代码是用于控制LED点阵显示数字0的程序,因为是16*16的LED点阵屏使用了四个74HC595移位寄存器进行级联。hc595_col 数组定义了显示数字0的列数据,可以使用对应取模软件进行数据获取。在单片机编程中,_nop_() 是一个非常有用的内联函数,它的作用是执行一个空操作(No Operation)。简单来说,它不进行任何实质性的操作,但会消耗一个或多个机器周期的时间。用于进行纳秒级别延时。实物图连接:SRCLK 是移位寄存器时钟引脚,连接到P3.6。RCK 是存储寄存器时钟引脚,连接到P3.5。SEK 是串行数据输入引脚,连接到P3.4。显示汉字同理。

#include <REGX52.H>
#include <intrins.h>sbit SRCLK = P3^6;
sbit RCK = P3^5;
sbit SEK = P3^4;void DelayXms(unsigned int xms)	//@12.000MHz
{unsigned char data i, j;while(xms){i = 2;j = 239;do{while (--j);} while (--i);xms--;}
}void hc595_write_data(unsigned char dat1,unsigned char dat2,unsigned char dat3,unsigned char dat4)
{int i = 0;//第四片595for(i = 0;i < 8;i++){SEK = dat4>>7;dat4<<=1;SRCLK = 0;_nop_();SRCLK = 1;//产生上升沿,进行移位_nop_();}//第三片595for(i = 0;i < 8;i++){SEK = dat3>>7;dat3<<=1;SRCLK = 0;_nop_();SRCLK = 1;//产生上升沿,进行移位_nop_();}//第二片595for(i = 0;i < 8;i++){SEK = dat2>>7;dat2<<=1;SRCLK = 0;_nop_();SRCLK = 1;//产生上升沿,进行移位_nop_();}//第一片595for(i = 0;i < 8;i++){SEK = dat1>>7;dat1<<=1;SRCLK = 0;_nop_();SRCLK = 1;//产生上升沿,进行移位_nop_();}RCK = 0;SRCLK = 1;//产生上升沿,进行存储输出RCK = 1;
}
unsigned char hc595_col[] = {0x00,0x00,0x00,0x00,0xE0,0x07,0x10,0x08,0x10,0x08,0x10,0x08,0x10,0x08,0x10,0x08,
0x10,0x08,0x10,0x08,0x10,0x08,0x10,0x08,0x10,0x08,0xE0,0x07,0x00,0x00,0x00,0x00};
unsigned char hc595_row[] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};void main()
{unsigned int i = 0;while(1){for(i = 0;i < 16;i++){hc595_write_data(hc595_row[i],hc595_row[i+16],~hc595_col[i*2],~hc595_col[i*2+1]);_nop_();;		hc595_write_data(0x00,0x00,0x00,0x00);}}
}

代码演示——16*16游动字幕显示

这段代码是游动字幕显示:Hello!字符,main 函数中的无限循环不断刷新LED矩阵的显示。通过 offset 变量控制动画的播放,每10次刷新后更新 offset,实现动画的循环播放。使用 code 关键字定义的数组存储在代码存储区,通常用于存储只读数据,如动画帧数据。MatrixLed_ShowColumn 函数根据列索引 column 决定如何显示数据。当列索引大于或等于8时,选择第9到16列;否则选择第1到8列。通过位操作选择特定的列。hc595_write_data 函数用于将数据发送到四片74HC595移位寄存器。每片595接收8位数据,通过控制 SEK 引脚发送数据位,SRCLK 引脚控制数据移位。

#include <REGX52.H>
#include <intrins.h>sbit SRCLK = P3^6;
sbit RCK = P3^5;
sbit SEK = P3^4;void hc595_write_data(unsigned char dat1,unsigned char dat2,unsigned char dat3,unsigned char dat4)
{int i = 0;//第四片595for(i = 0;i < 8;i++){SEK = dat4>>7;dat4<<=1;SRCLK = 0;_nop_();SRCLK = 1;//产生上升沿,进行移位_nop_();}//第三片595for(i = 0;i < 8;i++){SEK = dat3>>7;dat3<<=1;SRCLK = 0;_nop_();SRCLK = 1;//产生上升沿,进行移位_nop_();}//第二片595for(i = 0;i < 8;i++){SEK = dat2>>7;dat2<<=1;SRCLK = 0;_nop_();SRCLK = 1;//产生上升沿,进行移位_nop_();}//第一片595for(i = 0;i < 8;i++){SEK = dat1>>7;dat1<<=1;SRCLK = 0;_nop_();SRCLK = 1;//产生上升沿,进行移位_nop_();}RCK = 0;SRCLK = 1;//产生上升沿,进行存储输出RCK = 1;
}void MatrixLed_ShowColumn(unsigned char column,dat1,dat2)
{if(column >= 8){hc595_write_data(dat1,dat2,~0x00,~(0x01<<column - 8));	}else{hc595_write_data(dat1,dat2,~(0x01<<column),~0x00);}
}unsigned char code hc595_Animations_row1[] = {0x02,0xFC,0x80,0x80,0x80,0x80,0x00,0x00,0x00,0xC0,0x20,0x10,0x10,0x10,0x20,0x40,0x80,0x00,0x04,0xF8,0x00,0x00,0x00,0x00,0x00,0x04,0xF8,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0x40,0x40,0x40,0x40,0x80,0x00,0x00,0x00,0x00,0xFC,0x00,0x00,0x00,0x00};
unsigned char code hc595_Animations_row2[] = {0x20,0x1F,0x00,0x00,0x00,0x00,0x1F,0x20,0x00,0x07,0x19,0x21,0x21,0x21,0x21,0x11,0x08,0x00,0x00,0x1F,0x20,0x20,0x10,0x00,0x00,0x00,0x1F,0x20,0x20,0x10,0x00,0x00,0x0F,0x10,0x20,0x20,0x20,0x20,0x10,0x0F,0x00,0x00,0x00,0x37,0x00,0x00,0x00,0x00};void main()
{unsigned char i,offset = 0,count = 0;//0到15分别对应1到16列while(1){for(i = 0;i < 16;i++){MatrixLed_ShowColumn(i,hc595_Animations_row1[i+offset],hc595_Animations_row2[i+offset]);}count++;if(count>=10){count = 0;offset++;if(offset == 32){offset = 0;	}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/48213.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker自建rustdesk-server远程桌面

rustdesk简介 RustDesk 是一款可以平替 TeamViewer 的开源软件&#xff0c;旨在提供安全便捷的自建方案。 RustDesk 是一款功能齐全的远程桌面应用&#xff0c;具有以下特性&#xff1a; 支持 Windows、macOS、Linux、iOS、Android、Web 等多个平台。支持 VP8 / VP9 / AV1 …

Qt实现仿微信在线聊天工具(服务器、客户端)V1_ 04

上一篇实现了客户端与服务器的通信,这一篇继续实现相关功能 本章内容 服务器与数据库的连接通信格式的规范登录信息的验证 1.数据库的建立 这里连接的是Mysql8.0数据库,如果想要简单点可以直接用sqlite3数据库,调用逻辑基本差不多,数据库语法也基本一致。 在服务器工程里…

好用的接口文档swagger

本篇文章记录怎么给我们的后端项目整一个好用的接口文档 这个东西好像叫什么swagger吧 1. 依赖引入&#xff1a; <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-spring-boot-starter</artifactId></dependency>…

IP转接服务的重要性及其应用

在现今互联网高度发达的时代&#xff0c;IP转接服务的重要性日益凸显。对于家庭和企业而言&#xff0c;它不仅是连接互联网的桥梁&#xff0c;更是确保网络稳定、高效运行的关键。本文将深入探讨IP转接服务的核心意义及其在互联网世界中的应用。 IP转接服务&#xff0c;简而言之…

记录|C# winform布局学习

目录 前言一、自适应布局Step1. 添加AutoAdaptWindowsSize类Step2. Form中引用Step3. 创建SizeChanged事件函数Step4. 在Fram.Disiger中添加 更新时间 前言 参考视频&#xff1a; C#5分钟winform快速自适应布局 参考文章&#xff1a; 其他参考&#xff1a; 写这篇文章&#xff…

C#知识|账号管理系统-修改账号按钮功能的实现

哈喽,你好啊,我是雷工! 前边学习了通过选择条件查询账号的功能: 《提交查询按钮事件的编写》 本节继续学习练习C#,今天练习修改账号的功能实现。 以下为学习笔记。 01 实现功能 ①:从查询到的账号中,选择某一账号,然后点击【修改账号】按钮,将选中的信息获取显示到…

Java多线程-----线程安全问题(详解)

目录 &#x1f347;一.线程安全问题的引入&#xff1a; &#x1f352;二.线程安全问题产生的原因&#xff1a; &#x1f34c;三.如何解决线程安全问题&#xff1a; &#x1f389;1.synchronized关键字: &#x1f989;sychronized关键字的特性: ✨2.volatile关键字: &#…

橙芯创想:香橙派AIPRO解锁升腾LLM与Stable Diffusion的创意密码

文章目录 引言 一. 香橙派AI PRO配置以及展示优秀的扩展能力实物展示 二、Ascend-LLM模型部署开机xshell连接香橙派实战运行部署运行结果分析开发版表现 三、Stable Diffusion文生图性能表现 四、体验总结性能噪音便捷性 引言 在科技的浪潮中&#xff0c;一场融合智慧与创意的盛…

SpringBoot+Vue的图书销售网站(前后端分离)

技术栈 Java SpringBoot Maven MySQL mybatis Vue Shiro Element-UI 角色对应功能 网站用户 管理员 项目功能截图

C#中的线性表

什么是线性表 线性表是最简单、最基本、最常用的数据结构。线性表是线性结构的抽象(Abstract),线性结构的特点是结构中的数据元素之间存在一对一的线性关系。这种一对一的关系指的是数据元素之间的位置关系,即:(1)除第一个位置的数据元素外,其它数据元素位置的前面都只有一个数…

阿尔泰科技利用485模块搭建自动灌溉系统实现远程控制

自动灌溉系统又叫土壤墒情监控系统&#xff0c;土壤墒情监控系统主要实现固定站无人值守情况下的土壤墒情数据的自动采集和无线传输&#xff0c;数据在监控中心自动接收入库&#xff1b;可以实现24小时连续在线监控并将监控数据通过有线、无线等传输方式实时传输到监控中心生成…

Express+mysql单表分页条件查询

声明&#xff08;自己还没测试过&#xff0c;只提供大概逻辑&#xff0c;什么多表连接查询可以在原基础上添加&#xff09; class /*** param connection Express的mysql数据库链接对象* current 当前页* pageSize 一页显示行数* where [{key:id,operator:,value15}], key查询…

【HarmonyOS】HarmonyOS NEXT学习日记:四、布局与容器组件

【HarmonyOS】HarmonyOS NEXT学习日记&#xff1a;四、布局与容器组件 学习了基础组件之后&#xff0c;想要利用基础组件组装成一个页面&#xff0c;自然就要开始学习布局相关的知识。我理解的ArkUI的布局分为两个部分 一、组件自身的通用属性&#xff0c;诸如weight、height、…

加密软件有什么用?五款电脑文件加密软件推荐

加密软件对于个人和企业来说至关重要&#xff0c;尤其是在2024年这样一个高度数字化的时代&#xff0c;数据安全变得尤为重要。 数据保护&#xff1a;加密软件可以保护敏感信息不被未经授权的人访问。这包括个人数据、财务记录、健康信息、企业机密等。 防泄漏&#xff1a;防…

HarmonyOS工程目录结构

应用级配置文件app.json5 应用唯一标识、版本号、应用图标、应用名称等信息 模块级配置文件module.json5 oh-package.json5 三方库的管理 其他配置 用于编译构建&#xff0c;包括构建配置文件、编译构建任务脚本、混淆规则文件、依赖的共享包信息等。 build-profile.json…

用Wireshark观察IPsec协议的通信过程

目录 一、配置本地安全策略 二、启动Wireshark&#xff0c;设置过滤器&#xff0c;开始捕获 1. 主模式 2. Quick mode 三、心得体会 1. 碰到的问题和解决办法 2. 心得 一、配置本地安全策略 配置好IPsec如下&#xff1a; 由于在windows server2008安装wireshark失败&…

Android IjkPlayer内核编译记(一)so库编译使用

转载请注明出处&#xff1a;https://blog.csdn.net/kong_gu_you_lan/article/details/140528831 本文出自 容华谢后的博客 0.写在前面 最近在搞RTMP协议直播拉流的功能&#xff0c;使用了B站开源的IjkPlayer作为播放器内核&#xff0c;在网络不好的情况下延迟会比较高&#xf…

网络安全防御【防火墙双机热备带宽管理综合实验】

目录 一、实验拓扑图 二、实验要求 三、实验思路&#xff1a; 四、实验步骤&#xff1a; 1、FW3的网络相关配置&#xff1a; 2、FW1的新增配置&#xff1a; 3、交换机LSW6&#xff08;总公司&#xff09;的新增配置&#xff1a; 4、双机热备技术配置&#xff08;双机热…

甲骨文闲置ARM实例防回收的方法

前几日挖了个大坑&#xff0c;今天补一下&#xff0c;谈谈甲骨文闲置实例如何防止回收。 回收原则 2022年11月16日 Oracle添加声明&#xff1a; 从 2022 年 11 月 24 日开始&#xff0c;您闲置的 Always Free 计算实例可能会停止。巴拉巴拉&#xff0c;您还可以随时升级您的帐…

线程基础概念

1、线程概念: 线程是一个轻量级的进程 每一个线程都属于一个进程 进程是操作系统资源分配的最小单元 线程是CPU任务调度的最小单元 线程是一个任务执行的过程,包括创建、调度、消亡 创建: 线程空间位于进程空间内部 进程: …