Artix7系列FPGA实现SDI视频编解码,基于GTP高速接口,提供3套工程源码和技术支持

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 2、相关方案推荐
    • 本博已有的 SDI 编解码方案
    • 本方案在Xilinx--Kintex系列FPGA上的应用
    • 本方案在Xilinx--Zynq系列FPGA上的应用
  • 3、详细设计方案
    • 设计原理框图
    • SDI 输入设备
    • Gv8601a 均衡器
    • GTP 高速接口-->解串与串化
    • SMPTE SD/HD/3G SDI IP核
    • BT1120转RGB
    • 图像缓存
    • 视频读取控制
    • HDMI输出
    • RGB转BT1120
    • Gv8500 驱动器
    • SDI转HDMI盒子
    • 工程源码架构
  • 4、工程源码1详解-->3G-SDI转HDMI,无缓存输出方案
  • 5、工程源码2详解-->3G-SDI转HDMI,FDMA缓存输出方案
  • 6、工程源码3详解-->3G-SDI转3G-SDI,FDMA缓存输出方案
  • 7、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 8、上板调试验证
    • 准备工作
    • 输出视频演示
  • 9、福利:工程代码的获取

Artix7系列FPGA实现SDI视频编解码,基于GTP高速接口,提供3套工程源码和技术支持

1、前言

目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,利用Xilinx系列FPGA的GTP/GTX资源实现解串,利用Xilinx系列FPGA的SMPTE SDI资源实现SDI编解码,优点是合理利用了FPGA资源,GTP/GTX资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。

工程概述

本设计基于Xilinx的Artix7系列FPGA开发板实现SDI视频编解码,输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTP高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;

本设计的目的是输出解码的SDI视频,针对目前市面上的主流项目需求,本博设计了两种输出方式,一种是HDMI输出,另一种是3G-SDI输出,这两种方式都需要对解码BT1120视频进行转RGB和图像缓存操作;本设计使用BT1120转RGB模块实现视频格式转换;使用本博常用的FDMA图像缓存架构实现图像3帧缓存,缓存介质为板载的DDR3;也可以不要缓存直接输出,这种方式的优点是延时很低,适用于低延时场景;图像从DDR3读出后,进入HDMI发送模块输出HDMI显示器,这是HDMI输出方式;或者经过RGB转BT1120模块实现视频格式转换,然后视频进入SMPTE SD/HD/3G SDI IP核,进行SDI视频编码操作并输出SDI视频,再经过FPGA内部的GTP高速资源,实现并行数据到高速串行的转换,本博称之为串化,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器,这是SDI输出方式;本博客提供3套工程源码,具体如下:
在这里插入图片描述
现对上述3套工程源码做如下解释,方便读者理解:

工程源码1

开发板FPGA型号为Xilinx–>Xilinx-Artix7-100T–xc7a100tfgg484-2;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过GTP将SDI视频解串为并行数据;再经过SMPTE SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;然后不经过任何缓存,直接将视频送RGB转HDMI模块,将RGB888视频转换为HDMI视频,输出分辨率为1920x1080@60Hz;最后通过HDMI显示器显示图像;该工程不需要缓存,适用于Xilinx的Artix7低端系列FPGA实现SDI转HDMI的低延时场景;

工程源码2

开发板FPGA型号为Xilinx–>Xilinx-Artix7-100T–xc7a100tfgg484-2;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过GTP将SDI视频解串为并行数据;再经过SMPTE SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的FDMA图像缓存方案将视频写入DDR3做三帧缓存;然后读出视频送入RGB转HDMI模块,将RGB888视频转换为HDMI视频,输出分辨率为1920x1080@60Hz;最后通过HDMI显示器显示图像;该工程需要缓存,适用于Xilinx的Artix7低端系列FPGA实现SDI转HDMI场景;

工程源码3

开发板FPGA型号为Xilinx–>Xilinx-Artix7-100T–xc7a100tfgg484-2;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;经过GTP将SDI视频解串为并行数据;再经过SMPTE SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的FDMA图像缓存方案将视频写入DDR3做三帧缓存;然后读出视频送RGB转BT1120模块,将RGB888视频转换为BT1120视频;再经过SMPTE SD/HD/3G SDI IP核,将BT1120视频编码为SDI视频;再经过FPGA内部的GTX高速资源,将SDI并行数据转换为高速串行信号;再经过板载的Gv8500芯片实现差分转单端和驱动增强后输出,输出分辨率为1920x1080@60Hz;最后使用SDI转HDMI盒子连接到HDMI显示器显示;该工程需要缓存,适用于Xilinx的Artix7低端系列FPGA实现SDI转SDI场景;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

本博已有的 SDI 编解码方案

我的博客主页开设有SDI视频专栏,里面全是FPGA编解码SDI的工程源码及博客介绍;既有基于GS2971/GS2972的SDI编解码,也有基于GTP/GTX资源的SDI编解码;既有HD-SDI、3G-SDI,也有6G-SDI、12G-SDI等;专栏地址链接如下:
点击直接前往

本方案在Xilinx–Kintex系列FPGA上的应用

本方案在Xilinx–Kintex系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

本方案在Xilinx–Zynq系列FPGA上的应用

本方案在Xilinx–Zynq系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

3、详细设计方案

设计原理框图

设计原理框图如下:
在这里插入图片描述
注意!!!!
注意!!!!
红色箭头:无缓存HDMI输出路径
紫色箭头:有缓存3G-SDI输出路径
绿色箭头:有缓存HDMI输出路径

SDI 输入设备

SDI 输入设备可以是SDI相机,代码兼容HD/SD/3G-SDI三种模式;SDI相机相对比较贵,预算有限的朋友可以考虑用HDMI转SDI盒子模拟SDI相机,这种盒子某宝一百块左右;当使用HDMI转SDI盒子时,输入源可以用笔记本电脑,即用笔记本电脑通过HDMI线连接到HDMI转SDI盒子的HDMI输入接口,再用SDI线连接HDMI转SDI盒子的SDI输出接口到FPGA开发板,如下:
在这里插入图片描述

Gv8601a 均衡器

Gv8601a芯片实现单端转差分和均衡EQ的功能,这里选用Gv8601a是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8601a均衡器原理图如下:
在这里插入图片描述

GTP 高速接口–>解串与串化

本设计使用Xilinx特有的GTP高速信号处理资源实现SDI差分视频信号的解串与串化,对于SDI视频接收而言,GTP起到解串的作用,即将输入的高速串行的差分信号解为并行的数字信号;对于SDI视频发送而言,GTP起到串化的作用,即将输入的并行的数字信号串化为高速串行的差分信号;GTP的使用一般需要例化GTP IP核,通过vivado的UI界面进行配置,但本设计需要对SD-SDI、HD-SDI、3G-SDI视频进行自动识别和自适应处理,所以需要使得GTP具有动态改变线速率的功能,该功能可通过DRP接口配置,也可通过GTP的rate接口配置,所以不能使用vivado的UI界面进行配置,而是直接例化GTP的GTPE2_CHANNEL和GTPE2_COMMON源语直接使用GTP资源;此外,为了动态配置GTP线速率,还需要GTP控制模块,该模块参考了Xilinx的官方设计方案,具有动态监测SDI模式,动态配置DRP等功能;该方案参考了Xilinx官方的设计;GTP 解串与串化模块代码架构如下:
在这里插入图片描述

SMPTE SD/HD/3G SDI IP核

SMPTE SD/HD/3G SDI IP核是Xilinx系列FPGA特有的用于SDI视频编解码的IP,该IP配置使用非常简单,vivado的UI界面如下:
在这里插入图片描述
SMPTE SD/HD/3G SDI IP核必须与GTP配合才能使用,对于SDI视频接收而言,该IP接收来自于GTP的数据,然后将SDI视频解码为BT1120视频输出,对于SDI视频发送而言,该IP接收来自于用户侧的的BT1120视频数据,然后将BT1120视频编码为SDI视频输出;该方案参考了Xilinx官方的设计;SMPTE SD/HD/3G SDI IP核代码架构如下:
在这里插入图片描述

BT1120转RGB

BT1120转RGB模块的作用是将SMPTE SD/HD/3G SDI IP核解码输出的BT1120视频转换为RGB888视频,它由BT1120转CEA861模块、YUV422转YUV444模块、YUV444转RGB888三个模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

图像缓存

图像缓存方案采用自研的FDMA图像缓存架构,缓存介质为DDR3;FDMA图像缓存架构由FDMA、FDMA控制器、缓存帧选择器构成;图像缓存使用Xilinx vivado的Block Design设计,如下图:
在这里插入图片描述
关于FDMA更详细的介绍,请参考我之前的博客,博文链接如下:
点击直接前往

视频读取控制

FDMA图像缓存架构使用VGA时序模块完成视频读取控制,VGA时序模块负责产生VGA时序,他有两个作用,一是控制FDMA控制器从DDR3中读出缓存的视频,二是将同步后的VGA视频送入下一级模块,在HDMI输出方式下VGA时序模块的像素时钟由用户提供;在SDI输出方式下VGA时序模块的像素时钟由SMPTE SD/HD/3G SDI IP核的发送用户时钟提供,在不同的SDI模式下像素时钟不同,比如在3G-SDI模式下像素时钟为148.5M,在HD-SDI的720P@60Hz模式下像素时钟为74.25M;HDMI输出方式下的VGA时序模块代码架构如下:
在这里插入图片描述
SDI输出方式下的VGA时序模块代码架构如下:
在这里插入图片描述

HDMI输出

在HDMI输出方式下,使用HDMI输出模块将RGB视频编码为HDMI差分信号,HDMI输出模块采用verilog代码手写,可以用于FPGA的HDMI发送应用,代码如下:
在这里插入图片描述
关于这个模块,请参考我之前的博客,博客地址:点击直接前往

RGB转BT1120

在SDI输出方式下需要使用该模块;RGB转BT1200模块的作用是将用户侧的RGB视频转换为BT1200视频输出给SMPTE SD/HD/3G SDI IP核;RGB转BT1120模块由RGB888转YUV444模块、YUV444转YUV422模块、SDI视频编码模块、数据嵌入模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

Gv8500 驱动器

Gv8500芯片实现差分转单端和增强驱动的功能,这里选用Gv8500是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8500驱动器原理图如下:
在这里插入图片描述

SDI转HDMI盒子

在SDI输出方式下需要使用到SDI转HDMI盒子,因为我手里的显示器没有SDI接口,只有HDMI接口,为了显示SDI视频,只能这么做,当然,如果你的显示器有SDI接口,则可直接连接显示,我的SDI转HDMI盒子在某宝购买,不到100块;

工程源码架构

本博客提供3套工程源码,以工程源码2为例,vivado Block Design设计如下,其他工程与之类似,Block Design设计为图像缓存架构的部分:
在这里插入图片描述
以工程源码2为例,使工程源码架构如下,其他工程与之类似:
在这里插入图片描述

4、工程源码1详解–>3G-SDI转HDMI,无缓存输出方案

开发板FPGA型号:Xilinx-Artix7-100T–xc7a100tfgg484-2;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:HDMI ,分辨率1920x1080@60Hz;
SDI视频解串方案:Xilinx–GTP高速接口解串;
SDI视频解码方案:Xilinx–SMPTE SD/HD/3G SDI解码;
缓存方案:无缓存;
缓存介质:无缓存;
工程作用:此工程目的是让读者掌握Xilinx–Artix7低端系列FPGA实现SDI转HDMI的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、工程源码2详解–>3G-SDI转HDMI,FDMA缓存输出方案

开发板FPGA型号:Xilinx-Artix7-100T–xc7a100tfgg484-2;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:HDMI ,分辨率1920x1080@60Hz;
SDI视频解串方案:Xilinx–GTP高速接口解串;
SDI视频解码方案:Xilinx–SMPTE SD/HD/3G SDI解码;
缓存方案:自研FDMA方案;
缓存介质:DDR3;
工程作用:此工程目的是让读者掌握Xilinx–Artix7低端系列FPGA实现SDI转HDMI的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、工程源码3详解–>3G-SDI转3G-SDI,FDMA缓存输出方案

开发板FPGA型号:Xilinx-Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:3G-SDI,分辨率1920x1080@60Hz;
SDI视频解串/串化方案:Xilinx–GTP高速接口;
SDI视频编解码方案:Xilinx–SMPTE SD/HD/3G SDI IP核;
缓存方案:自研FDMA方案;
缓存介质:DDR3;
工程作用:此工程目的是让读者掌握Xilinx–Artix7低端系列FPGA实现SDI转SDI的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

7、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

8、上板调试验证

准备工作

需要准备的器材如下:
FPGA开发板;
SDI摄像头或HDMI转SDI盒子;
SDI转HDMI盒子;
HDMI显示器;
我的开发板了连接如下:
在这里插入图片描述

输出视频演示

以工程2,3G-SDI输入HDMI输出为例,输出如下:

3G-SDI输入HDMI输出

9、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/47855.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker容器下安装Matlab,无需挂载

Matlab的安装需要这些文件 传入ubuntu后,改过相关的文件权限后,发现还是无法挂载 这有可能是docker的安全管理策略导致容器不能挂载,因此采用不挂载形式,直接解压的方式安装Matlab 1.将iso改成zip,并解压 2.解压rar文件…

电机泵盖机器人打磨去毛刺,选德国进口高精度主轴

机器人打磨去毛刺该如何选择主轴呢?首先我们需要考虑的是工件的材质,电机泵盖通常使用铸铁、不锈钢、合金钢等金属材质,因此这类保持的硬度较高,一般会选择功率、扭矩较大的德国进口高精度主轴Kasite 4060 ER-S。 Kasite 4060 ER-…

设计分享—国外网站设计赏析

今天还是给大家分享一些国外的网站设计案例~ 蓝蓝设计是一家专注而深入的界面设计公司,为期望卓越的国内外企业提供卓越的大数据可视化界面设计、B端界面设计、桌面端界面设计、APP界面设计、图标定制、用户体验设计、交互设计、UI咨询、高端网站设计、平…

JVM和类加载机制-01[JVM底层架构和JVM调优]

JVM底层 Java虚拟机内存模型JVM组成部分五大内存区域各自的作用虚拟机栈(线程栈)栈帧内存区域 本地方法栈程序计数器为什么jvm要设计程序计数器? 堆方法区 JVM优化-堆详解JVM底层垃圾回收机制jvm调优工具jvisualvm.exeArthas工具使用 Java虚拟机内存模型 JVM跨平台原…

SpringBoot之全局异常处理

默认情况下的异常现象 创建一个接口 (接口需要传递参数key) RestController RequestMapping("/exception") public class ExceptionController {GetMapping("/accept")public String acceptKey(RequestParam("key") Str…

C语言第5天作业 7月16日

目录 1.求1000以内所有的质数。 2.有1、2、3、4个数字&#xff0c;能组成多少个互不相同且无重复数字的三位数&#xff1f;都是多少&#xff1f; 3.猴子吃桃问题 4.判断最大值 1.求1000以内所有的质数。 质数&#xff1a;只能够1和它本身整除 #include <stdio.h> in…

Camera Raw:首选项

Camera Raw 首选项 Preferences提供了丰富的配置选项&#xff0c;通过合理设置&#xff0c;可以显著提升图像处理的效率和效果。根据个人需求调整这些选项&#xff0c;有助于创建理想的工作环境和输出质量。 ◆ ◆ ◆ 打开 Camera Raw 首选项 方法一&#xff1a;在 Adobe Bri…

Linux系统学习日记——vim操作手册

Vim编辑器是linux下的一个命令行编辑器&#xff0c;类似于我们windows下的记事本。 目录 打开文件 编辑 保存退出 打开文件 打开 hello.c不存在也可以打开&#xff0c;保存时vim会自动创建。 效果 Vim打开时&#xff0c;处于命令模式&#xff0c;即执行命令的模式&#x…

解决IDEA 中出现已有类、函数找不到的情况

缓存导致部分索引失效&#xff0c;需要刷新缓存并重启idea即可 1、File > Invalidate Cache / Restart... 2、Invalidate and Restart

聊聊常见的分布式ID解决方案

highlight: xcode theme: vuepress 为什么要使用分布式ID&#xff1f; 随着 Web 开发技术的不断发展&#xff0c;单体的系统逐步走向分布式系统。在分布式系统中&#xff0c;使用分布式 ID(Distributed IDs)主要是为了在没有单点故障的情况下生成唯一标识符。这些唯一标识符在很…

C++【OpenCV】图片亮度色度归一化

#include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <iostream>using namespace cv; using namespace std;int main() {Mat image imread("SrcMF.jpg");// 灰度、Gamma归一化亮度cv::Mat m_gray;cv::cvtColor(image, m_gra…

Linux-CentOS7忘记密码找回步骤

虚拟机版本 一、进入开机页面&#xff0c;先按上下&#xff08;↑↓&#xff09;键&#xff0c;以免系统自动启动。 二、按“e”键进入编辑页面,找到如下图位置&#xff0c;输入&#xff1a;init/bin/sh 按CTRLX 进入单用户模式。 三、 输入 mount -o remount,rw / 然后按 ent…

【ARMv8/v9 GIC- 700 系列 2 -- GIC-700 上电控制寄存器 GICR_PWRR】

请阅读【ARM GICv3/v4 实战学习 】 文章目录 GIC-700 上电GICR_PWRR 寄存器字段介绍GICR_PWRR 功能说明GICR_PWER 代码配置GICR_PWRR 使用场景GICR_PWRR 注意事项GIC-700 上电 GICR_PWRR(功耗寄存器)是ARM GICv4架构中用于控制GIC-700是否可以关闭电源的寄存器。它通过几个位…

Go语言并发编程-Goroutine调度

goroutine 概念 在Go中&#xff0c;每个并发执行的单元称为goroutine。通常称为Go协程。 go 关键字启动goroutine go中使用关键字 go 即可启动新的goroutine。 示例代码&#xff1a; 两个函数分别输出奇数和偶数。采用常规调用顺序执行&#xff0c;和采用go并发调用&…

如何用EXCEL自动解方程/方程组?利用 矩阵乘法X=A-*B,X=mmult(minverse(A), B)

目录 问题的由来 1 数据 → 模拟分析 → 单变量求解 1.1 找一个单元格填入公式 1.2 功能入口 1.3 选择单变量求解&#xff0c;分别填入内容 1.4 求解 1.5 这个感觉用处不大 2 重点介绍&#xff0c;用EXCEL进行矩阵运算解方程的操作 2.1 运用EXCEL进行矩阵运算&…

Mac 安装MySQL 配置环境变量 修改密码

文章目录 1 下载与安装2 配置环境变量3 数据库常用命令3.1 Mac使用设置管理mysql服务启停 4 数据库修改root密码4.1 知道当前密码4.2 忘记当前密码4.3 问题 参考 1 下载与安装 官网&#xff1a;https://www.mysql.com/ 找到开源下载方式 下载社区版 2 配置环境变量 对于Mac…

Ubuntu16.04环境下Baxter机器人开发环境搭建要点说明

Ubuntu16.04环境下Baxter机器人开发环境搭建要点说明 前面写过一篇文章&#xff0c;描述了在ubuntu20.04环境下baxter机器人开发环境的搭建&#xff0c;本人在后来的使用中&#xff0c;出于一些原因又在ubuntu16环境下搭建了开发环境&#xff0c;二者总体流程基本类似&#xf…

TikTok内嵌跨境商城全开源_搭建教程/前端uniapp+后端源码

多语言跨境电商外贸商城 TikTok内嵌商城&#xff0c;商家入驻一键铺货一键提货 全开源完美运营&#xff0c;接在tiktok里面的商城内嵌&#xff0c;也可单独分开出来当独立站运营 二十一种语言&#xff0c;可以做很多国家的市场&#xff0c;支持商家入驻&#xff0c;多店铺等等…

大数据之数据抽取架构演变过程

架构演变之Flink架构的演变过程 一、 起初搭建整个大数据平台是基于CDH这一套资源管理和整合的CM资源管理器搭建的 整个平台包括了&#xff1a; HDFS&#xff0c;YARN&#xff0c;HIVE&#xff0c;zoozie,FLINK,Spark,Zookeeper等组件搭建而成&#xff0c; 刚开始搭建的时候&am…

golang 基础 泛型编程

&#xff08;一&#xff09; 示例1 package _caseimport "fmt"// 定义用户类型的结构体 type user struct {ID int64Name stringAge uint8 }// 定义地址类型的结构体 type address struct {ID intProvince stringCity string }// 集合转列表函数&#…