数字信号处理及MATLAB仿真(4)——量化的其他概念

        上回书说到AD转换的两个步骤——量化与采样两个步骤。现在更加深入的去了解以下对应的概念。学无止境,要不断地努力才有好的收获。万丈高楼平地起,唯有打好基础,才能踏实前行。

        不说了,今天咱们继续说说这两个步骤,首先说一下量化吧,我们从上篇文章的程序当中,很明显的可以看出,不管是通过在一段时间内取最小值作为量化电平,还是通过取整函数来进行量化的功能。二者所做出的量化信号与原信号之间都存在着一定的误差。而这个偏差就是我们常称的量化误差。量化误差是指在将模拟信号或连续取值的信号转换为有限个离散值(量化)的过程中,由于量化导致的信号值与原始信号值之间的偏差。简单来说,量化是对连续信号进行近似表示,必然会引入一定的误差。这个误差就是量化误差。当然这个量化误差好像也可以称为量化噪声。

        接下来,看看评估量化系统性能的重要指标之一——量化信噪比(Signal-to-Noise Ratio,SNR)。在将模拟信号转换为数字信号的量化过程中,由于量化的有限精度,不可避免地会引入量化误差,而量化误差可视为一种噪声。量化信噪比定义为信号功率与量化噪声功率的比值,记SNR = 10lg\frac{P_{s}}{P_{n}}。而计算它的公式为 SNR = 6.02N+1.76dB。当然了,这两个形式计算的方差在实际中一定相等吗?理论是否等于实际?还是需要通过MATLAB来简单的看一下。以下是量化信噪比的程序。

%量化信噪比是评估量化系统性能的重要指标之一
%它表示信号功率与量化噪声功率之间的比率
%close all;
clear all;
clc
Fs = 10000; % 采样频率
t = 0:1/Fs:1; % 时间序列f = 1000; % 正弦信号频率
signal = sin(2*pi*f*t); % 正弦信号quantization_level = 2^8;  %ADC的位数为8位,量化电平为2^8。
quantization_signal = round(signal*quantization_level)/quantization_level;
quantization_error = signal- quantization_signal;     %量化噪声% 计算信号和噪声的功率(能量)
signal_energy = sum(signal.^2)/length(signal); % 信号功率
noise_energy = sum(quantization_error.^2)/length(signal); % 噪声功率% 计算信噪比(SQNR)
sqnr = 10 * log10(signal_energy / noise_energy);fprintf('实际量化信噪比(SQNR)= %.2f dB\n',sqnr);%验证公式:量化噪声的计算公式:SNR=6.02N+1.76dB;N是阶数此处N为8。
%理论值
SNR = 6.02*8+1.76;fprintf('理论量化信噪比(SQNR)= %.2f dB\n',SNR);

        看看实际与理论的差别。

        这里大家不要我写啥就是啥。可以调高采样率,或者这是修改信号的频率看看,是什么样子的。要学会自己去探索。接下来看几个概念。

        1、量化噪声有什么特点?量化噪声是由于信号在模数转换(A/D转换)过程中产生的误差引入的,具有以下特点:均匀分布: 在理想情况下,量化噪声是均匀分布的,意味着在每个量化间隔内的误差是随机的。量化噪声的功率: 量化噪声的功率与信号的量化级数有关,通常在低频段上具有显著的能量。量化噪声的幅度: 量化噪声的幅度与量化级数相关,通常用均方根误差(RMSE)来度量。

  2、回顾一下量化信噪比的概念。量化信噪比(Signal-to-Noise Ratio, SNR)是指信号的功率与量化噪声的功率之比,通常以分贝(dB)为单位表示。高SNR表示量化过程中噪声较小,信号质量较高。

      3、低通采样和带通采样的差异:低通采样: 在低通采样中,信号在进行采样之前首先通过一个低通滤波器。低通滤波器会去除信号中超过Nyquist频率(采样频率的一半)的高频成分,以防止折叠现象的发生。折叠现象是指高频信号在低采样频率下被错误地表示为低频信号。带通采样: 带通采样是在采样之前使用带通滤波器选择感兴趣的频率带。这种方法用于处理带通信号,只保留特定频率范围内的信号成分。

        4、频率如何通过采样来完成折叠?频率折叠是指在采样过程中,超过Nyquist频率(采样频率的一半)的信号频率被错误地表示为低于Nyquist频率的信号。这是因为在离散时间中,信号的频谱是周期性的。通过适当选择采样率和使用低通滤波器预处理信号,可以避免频率折叠现象的发生。

        好了,今天就说这么多吧,把量化的其他概念说完了。明天继续采样的一些概念。

        欲知后事如何,且听下回分解。OVO.......

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/45102.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

每日刷题(二分图,二分查找,dfs搜索)

目录 1.P3853 [TJOI2007] 路标设置 2.P1129 [ZJOI2007] 矩阵游戏 3.P1330 封锁阳光大学 4.Trees 5.P1141 01迷宫 1.P3853 [TJOI2007] 路标设置 P3853 [TJOI2007] 路标设置 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 先求出每个路标之间的距离,再二分查找每…

数据库系统原理练习 | 作业2-第2章关系数据库(附答案)

整理自博主本科《数据库系统原理》专业课完成的课后作业,以便各位学习数据库系统概论的小伙伴们参考、学习。 *文中若存在书写不合理的地方,欢迎各位斧正。 专业课本: 目录 一、选择题 二、填空题 三、简答题 四、关系代数 1.课本p70页&…

虚拟机安装Linux CENTOS 07 部署NET8 踩坑大全

首先下载centos07镜像,建议使用阿里云推荐的地址: https://mirrors.aliyun.com/centos/7.9.2009/isos/x86_64/?spma2c6h.25603864.0.0.59b5f5ad5Nfr0X 其实这里就已经出现第一个坑了 centos 07 /usr/lib64/ 的 libstdc.so只支持到19; GLI…

数据湖表格式 Hudi/Iceberg/DeltaLake/Paimon TPCDS 性能对比(Spark 引擎)

当前,业界流行的集中数据湖表格式 Hudi/Iceberg/DeltaLake,和最近出现并且在国内比较火的 Paimon。我们现在看到的很多是针对流处理场景的读写性能测试,那么本篇文章我们将回归到大数据最基础的场景,对海量数据的批处理查询。本文…

静态时序分析:Leaf Cell(叶单元)

相关阅读​​​​​​​静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html 在DC中,leaf cell(叶单元)有时会出现在描述中,例如set_input_delay的-reference_pin选项的参数,就必须是一个端口或…

《昇思25天学习打卡营第18天|onereal》

RNN实现情感分类 概述 情感分类是自然语言处理中的经典任务,是典型的分类问题。本节使用MindSpore实现一个基于RNN网络的情感分类模型,实现如下的效果: 输入: This film is terrible 正确标签: Negative 预测标签: Negative输入: This film…

AI版Siri要明年见,研究表明ChatGPT暂无法取代程序员,Kimi推出浏览器插件

ChatGPT狂飙160天,世界已经不是之前的样子。 更多资源欢迎关注 根据彭博社记者马克古尔曼的最新消息,苹果公司今年不会推出全新的Apple Intelligence驱动的Siri,该公司计划在明年1月开始测试,并在iOS 18.4中才推出正式版本。 此前…

景联文科技以高质量多模态数据集赋能AI大模型,精准匹配提升模型性能

在人工智能的浪潮中,语料数据如同建筑的基石,其质量、规模和运用策略直接决定了AI模型的表现和应用的广泛性。 景联文科技在AI领域深耕多年,打磨了高质量多模态数据集,致力于为不同训练阶段的算法精准匹配高质量数据资源。 3000万…

STM32中断(NVIC和EXIT)

CM3 内核支持 256 个中断,其中包含了 16 个内核中断和 240个外部中断,并且具有 256 级的可编程中断设置。但STM32 并没有使用CM3内核的全部东西,而是只用了它的一部分。STM32有 76 个中断,包括16 个内核中断和 60 个可屏蔽中断&am…

Dify中的RAG和知识库

一.RAG 基本架构 当用户提问 “美国总统是谁?” 时,系统并不是将问题直接交给大模型来回答,而是先将用户问题在知识库中进行向量搜索,通过语义相似度匹配的方式查询到相关的内容(拜登是美国现任第46届总统…&#xff0…

深入剖析C++的 “属性“(Attribute specifier sequence)

引言 在阅读开源项目源代码是,发现了一个有趣且特殊的C特性:属性。 属性(attribute specifier sequences)是在C11标准引入的。在C11之前,编译器特有的扩展被广泛用来提供额外的代码信息。例如,GNU编译器&…

Qt/C++项目积累: 2.主机监控器 - 2.2 历史功能实现

修订历史: 20240711:初始表设计,采用sqlite 正文: 关于历史数据存储,考虑的是用数据库来完成,目前考虑使用Sqlite和mysql,先用sqlite来实现,设计表过程如下: 机器总览…

全网最适合入门的面向对象编程教程:14 类和对象的 Python 实现-类的静态方法和类方法,你分得清吗?

全网最适合入门的面向对象编程教程:14 类和对象的 Python 实现-类的静态方法和类方法,你分得清吗? 摘要: 本文主要介绍了Python中类和对象中的类方法和静态方法,以及类方法和静态方法的定义、特点、应用场景和使用方…

网安防御保护-小实验

1、DMZ区内的服务器,办公区仅能在办公时间内(9:00-18:00)可以访问,生产区的设备全天可以访问 2、生产区不允许访问互联网,办公区和游客区允许访问互联网 3、办公区设备10.0.2.10不允许访问DMZ区的FTP服务器和HTTP服务器,仅能ping通…

自主研发接口测试框架

测试任务:将以前完成的所有的脚本统一改写为unitest框架方式 1、需求原型 1.1 框架目录结构 V1.0:一般的设计思路分为配置层、脚本层、数据层、结果层,如下图所示 V 2.0:加入驱动层testdriver 1.2 框架各层需要完成的工作 1、配…

Fast DDS library windows 下源码编译(cmake)

目录 编译环境: 编译需要的源码文件: Fast DDS编译: 注意事项: 参考文档: 基于Fast DDS 的源码来编译相关的库,然后可以通过python 来调用库文件实现dds 数据通信,本文就详细的介绍编译过程…

机器学习筑基篇,容器调用显卡计算资源,Ubuntu 24.04 快速安装 NVIDIA Container Toolkit!...

[ 知识是人生的灯塔,只有不断学习,才能照亮前行的道路 ] Ubuntu 24.04 安装 NVIDIA Container Toolkit 什么是 NVIDIA Container Toolkit? 描述:NVIDIA Container Toolkit(容器工具包)使用户能够构建和运行 GPU 加速的容器,该工具包括一个容器运行时库和实用程序,用于自动…

石油巨头受冲击!埃克森美孚、BP接连发出盈利预警

KlipC报道:近日,BP(英国石油)预计其第二季度将面临10亿至20亿美元的减值费用,并发出警告称其炼油利润率“大幅下降”,石油交易收益预计出现疲软。消息公布后,其股价下跌超4%。 由于中间馏分油利…

JavaScript(8)——函数

函数 function,是被设计执行特定任务的代码块。 函数可以把具有相同或相似逻辑的代码包裹起来,通过函数调用执行这些代码,这么做的优势有利于精简代码方便复用。类似于alert(),prompt()和console.log(),这些都是js函数,不过已经…

STL(一)

书写形式:string (const string& str, size_t pos, size_t len npos); 举例: int main(){ string url("https://mp.csdn.net/mp_blog/creation/editor?spm1000.2115.3001.4503") string sub1(url,0,5);//从下标为0开始向后5个字符&…