【C语言】指针(3):探索-不同类型指针变量

目录

一、字符指针变量

二、数组指针变量

三、二维数组传参的本质

四、函数指针变量

4.1 函数指针变量

4.2 函数指针变量的使用

4.3 函数指针变量的拓展

五、函数指针数组

六、转移表的应用

通过深入理解指针(1)和深入理解指针(2),我们对指针有了一个初步的了解,学会了一级指针、二级指针、指针数组……而深入理解指针(3),主要是为了学习不同数据类型的指针变量。

一、字符指针变量


     字符串指针变量的指针类型为char*,下面我们通过这段代码来解析字符指针变量。

int main()
{printf("指针接收字符\n");char ch = 'w';char* pc = &ch;printf("\t*pc=%c\n", *pc);printf("----------------\n");printf("指针接收字符串\n");const char* pstr = "abcdef";//const 加了一层保护,使其变成常量字符串,被修改编译器会报错printf("\t*pstr=%c\n", *pstr);//其实是把字符串的首字符地址放到pstr,字符串出现在表达式中时,他的值就是第一个字符的地址printf("\tpstr=%s\n", pstr); //%s占位符的特点就是只要告诉他字符串的首地址, 就可以读取整个字符串printf("\tpstr[3]=%c\n", pstr[3]);//[]是特殊的解引用操作符,等价于*(pstr+3),相当于得到第1个元素偏移3得到第四个元素printf("\tabcdef[3] = % c\n", "abcdef"[3]);//可以把字符串想象成一个字符数组,可以通过下标去访问他return 0;
}

指针接收字符
        *pc=w
----------------
指针接收字符串
        *pstr=a
        pstr=abcdef
        pstr[3]=d
        abcdef[3] = d 

       字符指针变量,顾名思义就是指向字符的指针变量,所以利用指针接收字符的地址(第31行代码),最后解引用该指针变量得到的是对应的字符,非常容易理解。 但字符指针变量还有一种方式,就是接收字符串的地址。

       通过第35行代码,我们用字符指针变量pstr接收了字符串“abcdef”,那这是把整个字符串放到pstr指针变量里面了吗?

      其实并不是的,我们通过第36行代码的运行结果,发现将指针变量pstr解引用后得到的是‘a’,这说明字符指针变量pstr接收字符串的本质是将字符串的首字符地址存放到pstr中,所以如果字符串出现在表达式中,他的值就是第一个字符的地址。

      既然pstr存放的是字符串首字符的地址,那么我们打印出来的是一个地址,但我们在看向第37行代码,当我们用%s的占位符时,却可以直接将整个字符串打印出来,这说明了%s占位符的特点就是只要告诉他字符串首字符的地址,他就可以直接读取整个字符串。

     那为什么,我们知道了字符串的首元素地址,就可以通过%s打印出字符串全体呢?这是因为其实我们可以把字符串理解成一个字符数组,他具有数组的特点,可以通过首元素地址找到后面的全部元素,并且也可以像数组一样通过下标去访问每个元素,比如我们想访问字符串下标为3的元素(d),那么通过第39行代码我们可以发现“abcdef”[3]是可行的,

      既然可以通过下标去访问字符串,那么既然pstr是接收字符串的指针变量,那么我们同样可以通过首元素地址的指针偏移来找到下标为3的元素,第38行代码中的pstr[3](等价“*(pstr+3)”)也是可行的。

下面是一道和字符串相关的面试题。

int main()
{char str1[] = "hello bit.";char str2[] = "hello bit.";const char* str3 = "hello bit.";const char* str4 = "hello bit.";if (str1 == str2)printf("str1 and str2 are same\n");elseprintf("str1 and str2 are not same\n");if (str3 == str4)printf("str3 and str4 are same\n");elseprintf("str3 and str4 are not same\n");return 0;
}

str1 and str2 are not same
str3 and str4 are same

为什么str1和str2的地址不同,而str3和str4的地址相同呢??

       将常量字符串赋值给数组(str1和str2),本质上是将这个常量字符串复制一份到数组中,这两个数组其实并不在一个空间,所以str1=str2,并且复制出来的常量字符串是可以修改的。

       而如果通过字符指针变量指向常量字符串(str3和str4),对于常量字符串来说,是只能读不能改的,从内存利用率来说,内容相同的字符串只会保存一份,所以str3=str4.

二、数组指针变量


我们学过指针数组,它是一个存放指针的数组。

那什么是数组指针变量呢?我们通过已经学过的指针变量来类比一下。

所以数组指针变量是一个存放的是数组的地址,并且能够指向数组的指针变量。 

int* p1[10];
int(*p2)[10];

以上哪个是数组指针变量呢?

     对于int*p1[10]来说,首先p1会先和[ ]结合,然后int和*结合,所以p1有10个元素,并且每个元素是int*类型,所以p1是一个存放指针的数组,p1是指针数组。([ ]的优先级高于*)

     对于int(*p2)[10]来说,p2先和*结合了,所以*p2是一个指针,int和[10]代表p2指向的是一个数组,并且有10个元素,并且每个元素的类型是int,所以p2是数组指针。(因为[ ]的优先级高于*,所以必须加上( )来保证p和*先结合)

     那数组指针如何初始化呢?既然指针变量是用来存放数组地址的,而&arr是取整个数组的地址,所以写法就是int(*p2)[10]=&arr。

三、二维数组传参的本质


数组指针有什么用呢?其实数组指针有自己的应用场景,在此之前要先了解二维数组传参的本质

以往我们对有一个二维数组需要传递给函数时,我们是这样写的

void test(int a[][5], int r, int c)
{int i = 0;int j = 0;for (i = 0; i < r; i++){for (j = 0; j < c; j++){printf("%d ", p[i][j]);}printf("\n");}
}
int main()
{int arr[3][5] = { {1,2,3,4,5}, {2,3,4,5,6},{3,4,5,6,7} };test(arr, 3, 5);return 0;
}

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7 

形参和实参都是二维数组的形式,但其实还有其他写法。

      对于二维数组来说,可以看做是每个元素是一维数组的数组,也就是二维数组的每个元素是一个一维数组。那么二维数组的首元素就是第一行,是个一维数组。

     根据一维数组的数组名名就是首元素地址、一维数组传参本质是传递首元素地址这个规则,我们可以推出二维数组的数组名就是就是第一行(一维数组)的地址,二维数组传参本质是传递第一行这个一维数组的地址。

     根据上面的代码,我们知道该二维数组第一行的一维数组的数据类型是int[5],所以第一行的地址类型就是数组指针类型int(*)[5],所以我们可以将形参类型写成指针形式。   

    接下来对上面的代码进行改写,将形参写成数组指针类型。

void test(int(*p)[5], int r, int c)
{int i = 0;int j = 0;for (i = 0; i < r; i++){for (j = 0; j < c; j++){printf("%d ",p[i][j]);}printf("\n");}
}
int main()
{int arr[3][5] = { {1,2,3,4,5}, {2,3,4,5,6},{3,4,5,6,7} };test(arr, 3, 5);return 0;
}

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7 

怎么去理解*(*(p+i)+j))呢?我们要进行拆解!(假设访问二维数组中的一个元素)

首先是p+i,二维数组的首元素地址是第一行的一维数组,所以p存放的是第一行的地址,所以+i会跳过i行,i=0时,此时跳过0行,拿到的是第一行的地址,i=1时,跳过1行,拿到的是第二行的地址,i=2时,跳过2行,拿到的是第三行的地址。

然后是*(p+i),假设i已经确定,此时就是通过解引用拿到了一行的数据。

然后是*(p+i)+j,此时*(p+i)已经拿到一行的数据了,通过j来访问这一行的其他元素地址,当j=0时,就是首元素地址,j=1时,就跳过一个元素,拿到第二个元素的地址,以此类推,找到了该行所有元素的地址。

然后是*(*(p+i)+j)),假设j已经确定,此时*(p+i)+j就是一个元素的地址,再对他进行解引用,找到该元素。

底层逻辑还是通过指针的偏移量去访问每个元素。所以p[i][j]的写法也是可行的。

所以根据二维数组传参的本质-----传递首行这个一维数组的地址,我们找到了数组指针变量的应用场景。

四、函数指针变量


4.1 函数指针变量


通过类比,函数指针就是指向函数的指针,那么函数指针变量就是用来存放函数的地址。

对应数组arr来说,arr是数组首元素地址,而&arr代表是整个数组的地址,而对于函数来说,函数名是函数的地址,&函数名也是函数的地址。

既然函数指针变量是用来存放函数的地址的,所以未来也可以通过函数的地址去调用函数

函数指针怎么创建?

int(*p)(int, int) = Add;
int(*p)(int x, int y) = &Add;

( )将*和p结合起来,说明这是一个指针,(int,int)说明这个指针指向一个函数,并且形参类型是int和int,开头的int说明该函数的返回类型是int。

add和&add是一样的,因为对于函数来说,函数名是地址,&函数名也是地址

同理*p和p也是一样的,函数指针变量是可以不需要解引用。

形参的形参名可写可不写

int       (*pf3)   (int x,  int y)|            |      ————————————————|            |              ||            |     pf3指向函数的参数类型和个数交代|       函数指针变量名
pf3指向函数的返回类型int (*)(int x, int y)//pf3函数指针变量的类型

4.2 函数指针变量的使用

int Add(int x, int y)
{return x + y;
}
int main()
{int(*pf3)(int, int) = Add;printf("%d\n", (*pf3)(2, 3));printf("%d\n", pf3(3, 5));return 0;
}

5

8

注意:因为Add和&Add都是函数的地址,所以对于pf3来说,即使不解引用也是可以调用函数的,但如果解引用了,一定要记得用括号( )将*和pf3放在一起!!

4.3 函数指针变量的拓展

fun1(char* p, int (*)(char*));(*(void (*)())0)();void (*signal(int, void(*)(int)))(int);

分析这3个代码

1.fun1的的第1个形参的类型是字符指针,第2个形参int(*)(char*),(*)代表这个形参是个指针,int和(char*)表名这是一个函数指针,形参类型为字符指针,返回值为整型。函数指针作为其他函数的形参时,其自身的函数名和形参名可以省略,仅保留数据类型即可。

2.多个括号要逐步拆解,void(*)( )说明这是一个void类型的函数指针,没有形参,类型放在(),就是强制类型转换,所以(void(*)( )0)的意思时将0这个整数值强制转换成一个void(*)( )类型的函数指针,再进行解引用,得到的是函数指针的地址,结尾的( )就是调用0地址处的函数。所以上述代码实际上是一个函数调用,将0转化成一个void(*)( )类型的函数地址,再去调用0地址处的函数。

3.首先,*没有和signal在一起,signal(int,void(*)(int))说明signal是一个函数名,该函数的形参有两个类型,一个是int,一个是void(*)(int)类型的函数指针,剩下的部分就是该函数的返回类型,所以signal的返回类型是void(*)(int)类型的函数指针上述代码其实是一个函数声明。

通过上述的扩展,我们复习到了

1.认识函数指针类型

2.强制类型转换

3.通过函数指针调用函数的方式

4.函数的定义、声明、调用

4.4 typedef关键字


typedef是用来类型重命名的,可以将复杂的类型简单化

typedef unsigned int uint;
//将unsigned int 重命名为uinttypedef int* ptr_t;//整形指针
//int*重命名为ptr_ttypedef int(*parr_t)[5];//数组指针
//int(*5)重命名为parr_ttypedef void(*pfun_t)(int);//函数指针
//void(*)(int)重名名为pfun_tvoid (*signal(int, void(*)(int)))(int);//进行改写
pfun_t signal(int, pfun_t);

关于typedef,常规写法是  typedef 类型 重命名  ,但是对于数组指针类型和函数指针类型稍有区别,重命名部分要写在*的后面。

五、函数指针数组


      数组是一个存放相同类型数据的存储空间,所以函数指针数组存放的是具有相同返回类型和形参的函数指针。

     函数指针数组怎么创建呢?

int (*parr1[3])();
int* parr2[3]();

 如上图代码,其实是parr1,首先parr1先和[ ]结合,说明parr1是个数组,且有3个元素,存放的是int(*)()类型的函数指针。

   函数指针数组的应用场景,我们可以通过转移表来理解。

六、转移表的应用


函数指针数组,用数组取每个元素的方式去调用函数,就叫转移表。

当我们想要对两个数进行加减乘除运算操作时,以下是计算机的一般实现。

#include <stdio.h>
int add(int a, int b)
{return a + b;
}
int sub(int a, int b)
{return a - b;
}
int mul(int a, int b)
{return a * b;
}
int div(int a, int b)
{return a / b;
}
int main()
{int x, y;int input = 1;int ret = 0;do{printf("*************************\n");printf(" 1:add 2:sub \n");printf(" 3:mul 4:div \n");printf(" 0:exit \n");printf("*************************\n");printf("请选择:");scanf("%d", &input);switch (input){case 1:printf("输⼊操作数:");scanf("%d %d", &x, &y);ret = add(x, y);printf("ret = %d\n", ret);break;case 2:printf("输⼊操作数:");scanf("%d %d", &x, &y);ret = sub(x, y);printf("ret = %d\n", ret);break;case 3:printf("输⼊操作数:");scanf("%d %d", &x, &y);ret = mul(x, y);printf("ret = %d\n", ret);break;case 4:printf("输⼊操作数:");scanf("%d %d", &x, &y);ret = div(x, y);printf("ret = %d\n", ret);break;case 0:printf("退出程序\n");break;default:printf("选择错误\n");break;}} while (input);return 0;
}

假设我们想要对这两个数进行更多的运算,那么由于增加了更多的选择,switch语句的相关代码会变得非常冗长,且重复性很高,所以此时用函数指针数组,可以很好地解决这个问题。下面我们通过函数指针数组来实现。

int add(int a, int b)
{return a + b;
}
int sub(int a, int b)
{return a - b;
}
int mul(int a, int b)
{return a * b;
}
int div(int a, int b)
{return a / b;
}
int main()
{int x, y;int input = 1;int ret = 0;int(*p[5])(int x, int y) = { 0, add, sub, mul, div }; //转移表do{printf("*************************\n");printf(" 1:add 2:sub \n");printf(" 3:mul 4:div \n");printf(" 0:exit \n");printf("*************************\n");printf("请选择:");scanf("%d", &input);if ((input <= 4 && input >= 1)){printf("输入操作数:");scanf("%d %d", &x, &y);ret = (*p[input])(x, y);printf("ret = %d\n", ret);}else if (input == 0)printf("退出计算器\n");elseprintf("输入有误\n");} while (input);return 0;
}

我们发现原本通过switch语句的选择代码,直接变成了函数指针数组的下标访问,代码简洁清晰。

      为什么可以使用函数指针数组?因为add、sub、mul、div这四个函数的形参以及返回类型是意义的,所以他们的函数指针类型也是一致的,根据数组只能存放相同数据类型的特点,所以这几个函数可以被放在一个函数指针数组里,当放进函数指针数组时,我们就可以通过下标去访问并调用对应的函数!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/43535.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

67.SAP FICO-凭证类型学习

目录 SAP凭证类型 凭证类型的作用 - OBA7 SAP默认的凭证类型更改 FI相应事务代码默认凭证类型 - OBU1 对FB50、60、70默认凭证类型的更改 - OBZO 后勤货物移动默认凭证类型 - OMBA 发货凭证类型 收货凭证类型 自动移动凭证类型 存货盘点凭证类型 发票默认的凭证类…

数据结构--二叉树相关习题5(判断二叉树是否是完全二叉树 )

1.判断二叉树是否是完全二叉树 辨别&#xff1a; 不能使用递归或者算节点个数和高度来判断。 满二叉树可以用高度和节点来判断&#xff0c;因为是完整的。 但是完全二叉树前面是满的&#xff0c;但是最后一层是从左到右连续这种 如果仍然用这种方法的话&#xff0c;如下图…

暑期备考2024小学生古诗文大会:吃透真题和知识点(持续)

2024年上海市小学生古诗文大会的自由报名初赛将于10月19日&#xff08;星期六&#xff09;正式开始&#xff0c;还有3个多月的时间。 为帮助孩子们备考&#xff0c;我持续分享往年上海小学生古诗文大会真题&#xff0c;这些题目来自我去重、合并后的1700在线题库&#xff0c;每…

加密与安全_密钥体系的三个核心目标之完整性解决方案

文章目录 Pre机密性完整性1. 哈希函数&#xff08;Hash Function&#xff09;定义特征常见算法应用散列函数常用场景散列函数无法解决的问题 2. 消息认证码&#xff08;MAC&#xff09;概述定义常见算法工作原理如何使用 MACMAC 的问题 不可否认性数字签名&#xff08;Digital …

SketchUp Pro 2024:现代科技之诗意体验

在那遥远的唐朝&#xff0c;李白曾以诗酒为伴&#xff0c;游历山川&#xff0c;挥洒才情。而今&#xff0c;若李白穿越时空&#xff0c;手握现代科技之利器——SketchUp Pro 2024&#xff0c;定会以诗意之笔&#xff0c;描绘这款软件的神奇与魅力。 初识SketchUp Pro 2024 初…

k8s record 20240708

一、PaaS 云平台 web界面 资源利用查看 Rancher 5台 CPU 4核 Mem 4g 100g的机器 映射的目录是指docker重启后&#xff0c;数据还在 Rancher可以创建集群也可以托管已有集群 先docker 部署 Rancher&#xff0c;然后通过 Rancher 部署 k8s 想使用 kubectl 还要yum install 安…

ATA-8035射频功率放大器在声动力疗法中的应用

声动力疗法是一种基于声波能量的治疗方法&#xff0c;广泛应用于医疗和美容领域。它利用高强度聚焦的声波来实现切割、破碎或加热组织&#xff0c;以治疗各种疾病和美容问题。在声动力疗法中&#xff0c;射频功率放大器起着至关重要的作用&#xff0c;它负责提供足够的能量来激…

达梦数据库的系统视图v$auditrecords

达梦数据库的系统视图v$auditrecords 在达梦数据库&#xff08;DM Database&#xff09;中&#xff0c;V$AUDITRECORDS 是专门用来存储和查询数据库审计记录的重要系统视图。这个视图提供了对所有审计事件的访问权限&#xff0c;包括操作类型、操作用户、时间戳、目标对象等信…

详解 | 什么是GeoTrust

GeoTrust是一家全球知名的数字证书颁发机构&#xff08;Certificate Authority&#xff0c;简称CA&#xff09;&#xff0c;专注于提供SSL/TLS证书和其他相关的网络安全产品。 1、历史背景&#xff1a; GeoTrust成立于2001年&#xff0c;最初作为一个独立的公司运营。2006年&a…

js+spring boot实现简单前后端文件下载功能

jsboot项目实现自定义下载 一、前端页面 1、先导入axios的js包 2、注意axios响应的格式&#xff1a;result.data.真实的数据内容 3、这里请求的url就是你boot项目的getMapping的url&#xff0c;保持一致即可 4、如果想在后端设置文件名&#xff0c;那么后端生成后&#xf…

安卓应用开发学习:腾讯地图SDK应用改进,实现定位、搜索、路线规划功能集成

一、引言 我的上一篇学习日志《安卓应用开发学习&#xff1a;通过腾讯地图SDK实现定位功能》记录了利用腾讯地图SDK实现手机定位功能&#xff0c;并能获取地图中心点的经纬度信息。这之后的几天里&#xff0c;我对《Android App 开发进阶与项目实战》一书第九章的内容深入解读…

【深度学习实战(44)】Anchor based and Anchor free(无锚VS有锚)

1 anchor-based 深度学习目标检测通常都被建模成对一些候选区域进行分类和回归的问题。在单阶段检测器中&#xff0c;这些候选区域就是通过滑窗方式产生的 anchor&#xff1b;在两阶段检测器中&#xff0c;候选区域是 RPN 生成的 proposal&#xff0c;但是 RPN 本身仍然是对滑窗…

leetcode--层数最深叶子节点的和

leetcode地址&#xff1a;层数最深叶子节点的和 给你一棵二叉树的根节点 root &#xff0c;请你返回 层数最深的叶子节点的和 。 示例 1&#xff1a; 输入&#xff1a;root [1,2,3,4,5,null,6,7,null,null,null,null,8] 输出&#xff1a;15 示例 2&#xff1a; 输入&#xff…

多点GRE over IPsecVPN模式下nhrp的调优

一、实验目的 在多点GRE over IPsecVPN模式下对nhrp进行调优&#xff0c;在总部开启重定向、在分支开启shortcut 网络拓扑&#xff1a; 二、基础设置 &#xff08;一&#xff09;如图所示配置接口地址和区域&#xff0c;连接PC的接口位于trust区域、连接路由器的接口位于unt…

qt5.15关于qradiobutton遇到的坑

前言 不知道是只有我遇到了&#xff0c;还是qt本身就存在这个bug 当将2个qradiobutton放入到一个布局内&#xff0c;然后进行来回切换&#xff0c;若无数据刷新的情况下&#xff0c;切换无异常&#xff0c;当窗体内有数据开始刷新了&#xff0c;则点击其中一个qradiobutton&am…

语法糖:代码中的甜品

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

以太网电路相关功能说明

RJ45模块用于PHY芯片之间的互连&#xff0c;如图1所示&#xff0c;RJ45有两种组合形式&#xff0c;一种是分立式&#xff0c;网口变压器和RJ45连接座是分开的&#xff0c;另一种是网口变压器和RJ45集成在一起。 图1 RJ45两种主要形式 接下来以分立式RJ45的百兆网电路做个说明&a…

基于springboot+vue养老院管理系统+lw+源码+讲解+调试+演示视频

第3章 系统分析 用户的需求以及与本系统相似的在市场上存在的其它系统可以作为系统分析中参考的资料&#xff0c;分析人员可以根据这些信息确定出本系统具备的功能&#xff0c;分析出本系统具备的性能等内容。 3.1可行性分析 尽管系统是根据用户的要求进行制作&#xff0c;但…

Matlab基础语法篇(上)

Matlab基础语法&#xff08;上&#xff09; 一、基知&#xff08;一&#xff09;界面介绍&#xff08;二&#xff09;常用快捷键&#xff08;三&#xff09;常用指令&#xff08;四&#xff09;Matlab帮助系统 二、运算基础&#xff08;一&#xff09;变量&#xff08;二&#…

【初阶数据结构】深入解析队列:探索底层逻辑

初阶数据结构相关知识点可以通过点击以下链接进行学习一起加油&#xff01;时间与空间复杂度的深度剖析深入解析顺序表:探索底层逻辑深入解析单链表:探索底层逻辑深入解析带头双向循环链表:探索底层逻辑深入解析栈:探索底层逻辑深入解析队列:探索底层逻辑深入解析循环队列:探索…