Flask项目搭建及部署 —— Python

flask搭建及部署
pip 19.2.3

python 3.7.5

Flask 1.1.1

Flask-SQLAlchemy 2.4.1

Pika 1.1.0

Redis 3.3.11

flask-wtf 0.14.2

1、创建flask项目:
 

创建完成后整个项目结构树: 

app.py: 项⽬管理⽂件,通过它管理项⽬。

static: 存放静态文件

templates文件夹:用于放置html模板文件

由于flask属于轻量级web框架, 更加自由、灵活,可扩展性强,第三方库的选择面广,开发时可以结合自己最喜欢用的轮子,也能结合最流行最强大的Python库 。所以这个框架的代码架构需要自己设计。

2、创建项目主要逻辑代码保存目录

手动创建application目录、filter目录及其子目录

application : 项目主要逻辑代码保存目录

_init_.py : 创建flask应用并加载配置,如mysql,redis,rabbitmq,

apps : 专门用于保存每一个项目的蓝图

app1 : app1蓝图目录,在app1下的init_.py中文件中创建蓝图对象,view.py中新增对应的视图文件,在 model.py中写模型代码

settings : 项目配置存储目录

dev.py : 项目开发阶段配置文件

prop.py : 项目生成阶段配置文件

static : 项目静态文件夹(用于存放css一类的文件)

templates : 用于放置html模板文件

filter : 整个项目拦截器目录

requestFilter.py: 针对整个app项目全局路由拦截规则定义

app.py : 项⽬管理⽂件,通过它启动整个项目

2.1 配置mysql数据库,加载配置文件并针对整个app项目定义全局db
2.1.1 settings.py

#全局通用配置类
class Config(object):"""项目配置核心类"""#调试模式DEBUG=False
​# 配置日志# LOG_LEVEL = "DEBUG"LOG_LEVEL = "INFO"
​
​# 配置redis# 项目上线以后,这个地址就会被替换成真实IP地址,mysql也是REDIS_HOST = 'your host'REDIS_PORT = your portREDIS_PASSWORD = 'your password'REDIS_POLL = 10
​#数据库连接格式SQLALCHEMY_DATABASE_URI = "mysql+pymysql://user:password@localhost:3306/test?charset=utf8"# 动态追踪修改设置,如未设置只会提示警告SQLALCHEMY_TRACK_MODIFICATIONS = False# 查询时会显示原始SQL语句SQLALCHEMY_ECHO = False# 数据库连接池的大小SQLALCHEMY_POOL_SIZE=10#指定数据库连接池的超时时间SQLALCHEMY_POOL_TIMEOUT=10# 控制在连接池达到最大值后可以创建的连接数。当这些额外的 连接回收到连接池后将会被断开和抛弃。SQLALCHEMY_MAX_OVERFLOW=2
​
​#rabbitmq参数配置RABBITUSER="user"RABBITPASSWORD="password"RABBITHOST="your ip"RABBITPORT=your port

2.1.2 dev.py

from . import Config
​
class DevelopmentConfig(Config):'开发模式下的配置'# 查询时会显示原始SQL语句SQLALCHEMY_ECHO = True

2.1.3 prop.py

from . import Config
​
class ProductionConfig(Config):"""生产模式下的配置"""DEBUG = False

2.1.4 加载配置文件,定义全局的db( SQLALchemy类的实例 )供项目使用

# 主应用的根目录
app = Flask(__name__)
​
config = {'dev': DevelopmentConfig,'prop': ProductionConfig,
}
​
# 设置配置类
Config = config['dev']
​
# 加载配置
app.config.from_object(Config)
​
# 创建数据库连接对象
db = SQLAlchemy(app)

dev : 测试环境配置

prop: 生产环境配置

Flask应用app配置加载

通常三种方式

从配置对象中加载:app.config.from_object()

从配置文件中加载:app.config.from_pyfile()-ini文件

从环境变量中加载:app.config.from_envvar()

配置对象

从配置对象中加载,创建配置的类:

# 配置对象,里面定义需要给 APP 添加的一系列配置
class Config(object):DEBUG = True
​
​
app = Flask(__name__)
​
# 从配置对象中加载配置
app.config.from_object(Config)
app.run()

配置文件

从配置文件中加载,在目录中定义一个配置文件config.ini

app = Flask(__name__)
​
# 从配置对象中加载配置
app.config.from_pyfile("config.ini")
app.run()

环境变量

app = Flask(__name__)
# 从环境变量中加载
app.config.from_envvar("FLASKCONFIG")
app.run()

2.2 定义model模型,负责和数据库交互
app1.model

from application import db
​
class Wdtest(db.Model):__tablename__ = "wdtest" #设置表名id = db.Column(db.String(100), primary_key=True, comment="主键ID")name = db.Column(db.String(20), index=True, comment="姓名" )age = db.Column(db.Integer, default=True, comment="年龄")

模型 表示程序使用的持久化实体. 在Flask-SQLALchemy 中, 模型一般是一个 Python 类, 类中的属性对应数据库中的表.

db.Model :创建模型,

db.Column : 创建模型属性.

tablename :指定表名

模型属性类型 :

类型名Python类型说明
Integerint普通整数,一般是 32 位
SmallIntegerint取值范围小的整数,一般是 16 位
Big Integerint 或 long不限制精度的整数
Floatfloat浮点数
Numericdecimal.Decimal定点数
Stringstr变长字符串
Textstr变长字符串,对较长或不限长度的字符串做了优化
Unicodeunicode变长 Unicode 字符串
Unicode Textunicode变长 Unicode 字符串,对较长或不限长度的字符串做了优化
Booleanbool布尔值
Datedatetime.date日期
Timedatetime.time时间
DateTimedatetime.datetime日期和时间
Intervaldatetime.timedelta时间间隔
Enumstr一组字符串
PickleType任何 Python 对象自动使用 Pickle 序列化
LargeBinarystr二进制文件


常用 SQLAlchemy 列选项

选项名说明
primary_key如果设为 True,这列就是表的主键
unique如果设为 True,这列不允许出现重复的值
index如果设为 True,为这列创建索引,提升查询效率
nullable如果设为 True,这列允许使用空值;如果设为 False,这列不允许使用空值
default为这列定义默认值

2.3 声明蓝图
app1._init.py

#给app取别名为 'index'
index_blu=Blueprint('index',__name__,template_folder='templates',static_folder='static')
​
from .views import *

template_folder:指定模板文件路径,查找顺序,先全局templates里面找,没找到,再往子蓝图里面找.

这里是把view中所有的视图都声明在index这个蓝图里面,接下来我们需要做的是将这个声明好的蓝图,注册进我们的项目中。

2.4 将声明好的蓝图注册进app中
application.init_:

from application.settings.dev import DevelopmentConfig
from application.settings.prop import ProductionConfig
​
# 主应用的根目录
app = Flask(__name__)
​
config = {'dev': DevelopmentConfig,'prop': ProductionConfig,
}
​
# 设置配置类
Config = config['dev']
​
# 加载配置
app.config.from_object(Config)
​
# 创建数据库连接对象
db = SQLAlchemy(app)
​
# todo 注册蓝图
from .apps.app1 import index_blu
app.register_blueprint(index_blu, url_prefix='/index')

针对:app = Flask(name)解释

Flask类初始化参数

Flask类init方法部分代码

def __init__(self,import_name,static_url_path=None,static_folder="static",static_host=None,host_matching=False,subdomain_matching=False,template_folder="templates",instance_path=None,instance_relative_config=False,root_path=None,):pass

import_name:Flask程序所在的包(模块),传 __name__

static_url_path:静态文件访问路径,可以不传,默认为:/ + static_folder

static_folder:静态文件存储的文件夹,可以不传,默认为 static

template_folder:模板文件存储的文件夹,可以不传,默认为 templates

3 通过以上的步骤后,我们可以基本操作数据库了:
以下所有示例代码,皆在view.py中去实现

3.1 增:
先写怎么增,然后增加,最后提交

student = Wdtest(id=ids , name=name, age=age)
try:application.db.session.add(student)application.db.session.commit()
except:# 事務回滾application.db.session.rollback()

3.2 删:
先获取数据库中的这个数据,再删除它

 user = Wdtest.query.first()application.db.session.delete(user)application.db.session.commit()

3.3 改:

user = Wdtest.query.first()
user.name = name
try:application.db.session.commit()
except:# 事務回滾application.db.session.rollback()

3.4 查:

# 查询所有⽤户数据
user_list=Wdtest.query.all()
​
# 查询有多少个⽤户
user_list_num=Wdtest.query.count()
# 查询第1个⽤户
user=Wdtest.query.first()
# 查询id为3的⽤户[3种⽅式]
user=Wdtest.query.get(3)  # 根据主键查询
user_list=Wdtest.query.filter_by(id=3).all()  # 以关键字实参形式进行匹配字段
user_list=Wdtest.query.filter(Wdtest.id == 3).all()  # 以恒等式形式匹配字段
​
# 查询名字结尾字符为g的所有⽤户
Wdtest.query.filter(Wdtest.name.endswith('g')).all()
​
# 查询名字包含‘wa'的所有项目
user_list=Wdtest.query.filter(Wdtest.name.contains('wa')).all()
# 模糊查询
user_list =Wdtest.query.filter(Wdtest.name.like('%a%')).all()
# 查询名字wa开头和age为20的所有⽤户[2种⽅式]
user_list=Wdtest.query.filter(Wdtest.name.startswith('wa'),Wdtest.age == 20).all()
user_list=Wdtest.query.filter(and_(Wdtest.name.startswith('wa'), Wdtest.age == 20)).all()
​
# 非条件查询查询名字不等于wade的所有⽤户[2种⽅式]
user_list=Wdtest.query.filter(not_(Wdtest.name == 'wade')).all()
user_list=Wdtest.query.filter(Wdtest.name != 'wade').all()
​
# in 条件查询
user_list=Wdtest.query.filter(Wdtest.id.in_(['97124f50-0208-11ea-a66c-04ea56212bdf', '3'])).all()
​
# 所有⽤户先按年龄从⼩到⼤, 再按id从⼤到⼩排序, 取前5个
user_list=Wdtest.query.order_by(Wdtest.age,Wdtest.id.desc()).limit(5).all()
​
# 分⻚查询, 每⻚3个, 查询第2⻚的数据
pn = Wdtest.query.paginate(2,3)
print(pn.pages)
print(pn.page)
print(pn.items)

4 路由传参
有时我们需要将同一类 URL 映射到同一个视图函数处理,比如:使用同一个视图函数来显示不同用户的个人信息。

# 路由传递参数
@app.route('/user/<id>')
def user_info(id):return '%s' % id

路由传递的参数默认当做 string 处理

####指定请求方式

在 Flask 中,定义一个路由,默认的请求方式为:

GET

OPTIONS

HEAD

在装饰器添加请求指定方式:

@app.route('/test', methods=['GET', 'POST'])
def test():return "ok"

5 动态正则匹配路由
flask实现正则匹配步骤:

导入转换器基类:在 Flask 中,所有的路由的匹配规则都是使用转换器对象进行记录

自定义转换器:自定义类继承于转换器基类

添加转换器到默认的转换器字典中

使用自定义转换器实现自定义匹配规则

###实现:

导入转换器基类

from werkzeug.routing import BaseConverter

自定义转换器

# 自定义正则转换器

class RegexConverter(BaseConverter):def __init__(self, url_map, *args):super(RegexConverter, self).__init__(url_map)# 将接受的第1个参数当作匹配规则进行保存self.regex = args[0]

添加转换器到默认的转换器字典中,并指定转换器使用时名字为: re

app = Flask(__name__)
​
# 将自定义转换器添加到转换器字典中,并指定转换器使用时名字为: regex
app.url_map.converters['regex'] = RegexConverter

使用转换器去实现自定义匹配规则

当前此处定义的规则是:3位数字

@app.route('/index/<regex("[0-9]{3}"):id>')
def user_info(id):return "id 为 %s" % id

自定义转换器其他函数实现

继承于自定义转换器之后,还可以实现 to_python 和 to_url 这两个函数去对匹配参数做进一步处理:

to_python:

该函数参数中的 value 值代表匹配到的值,可输出进行查看

匹配完成之后,对匹配到的参数作最后一步处理再返回,比如:转成 int 类型的值再返回:

class RegexConverter(BaseConverter):def __init__(self, url_map, *args):super(RegexConverter, self).__init__(url_map)# 将接受的第1个参数当作匹配规则进行保存self.regex = args[0]
​def to_python(self, value):return int(value)

系统自带转换器

DEFAULT_CONVERTERS = {'default':          UnicodeConverter,'string':           UnicodeConverter,'any':              AnyConverter,'path':             PathConverter,'int':              IntegerConverter,'float':            FloatConverter,'uuid':             UUIDConverter,
}

6 增加日志记录、redis配置加载、mq配置加载
6.1 日志记录
Settings._init:

# 配置日志
# LOG_LEVEL = "DEBUG"
LOG_LEVEL = "INFO"

日志记录级别

FATAL/CRITICAL = 致命的,危险的
ERROR = 错误
WARNING = 警告
INFO = 信息
DEBUG = 调试
NOTSET = 没有设置

application._init:

1、日志模块基础配置,如:日志存放地址、日志记录格式、日志等级

#增加日志模块
def setup_log(Config):#设置日志等级logging.basicConfig(level=Config.LOG_LEVEL)# 创建日志记录器,指明日志保存的路径、每个日志文件的最大大小、保存的日志文件个数上限file_log_handler=RotatingFileHandler('log/log',maxBytes=1024 * 1024 * 300, backupCount=10)# 创建日志记录的格式 日志等级 输入日志信息的文件名 行数 日志信息formatter = logging.Formatter('%(asctime)s: %(levelname)s %(filename)s:%(lineno)d %(message)s')# 为刚创建的日志记录器设置日志记录格式file_log_handler.setFormatter(formatter)# 为全局的日志工具对象(flaskapp使用的)添加日志记录器logging.getLogger().addHandler(file_log_handler)

2、日志启动

#日志启动
setup_log(Config)

6.2 redis配置及加载
之前我们在config中已经把redis的配置已经写进去了,所以这里可以直接创redis连接池供app全局使用

application._init:

#新增redis连接模块
def connectRedis(Config):pool = redis.ConnectionPool(host=Config.REDIS_HOST, port=Config.REDIS_PORT, password=Config.REDIS_PASSWORD,max_connections=Config.REDIS_POLL)redis_store = redis.Redis(connection_pool=pool)return redis_store


使用示例:

@index_blu.route("/redis",methods=["POST","GET"])
def add_toRedis():logging.info("come to here")key = request.args.get("key")application.redis_store.set(key , "1233")value=application.redis_store.get( key )print(value)return "12333"


6.3 rabbitmq基础配置及加载

# rabbitmq配置访问
# 添加用户名和密码
credentials = pika.PlainCredentials(Config.RABBITUSER, Config.RABBITPASSWORD)
# 配置连接参数
parameters = pika.ConnectionParameters(host=Config.RABBITHOST, port=Config.RABBITPORT, credentials=credentials)
connection = pika.BlockingConnection(parameters)
channel = connection.channel()


使用示例:

@index_blu.route("/rabitmq",methods=["POST","GET"])
def add_rabitmq():logging.info("come to rabiitmq")application.channel.queue_declare(queue='queuetest2')
​return "33333"

7 全局拦截器配置
filerter.requestFilter

这里只是简单针对请求路径非index的进行拦截,如果还有其他拦截条件或者机制,可以继续在filter这个包下添加

from flask import request
import application
​
# 拦截器,每次的请求进来都会做的操作
@application.app.before_request
def before_action():# 获取当前请求的路由(路径)a = request.pathprint(a)u = a.split('/')if len(a)>2:if u[1] == 'index':print('success')else:return "无权限请求"


拦截器加载进app:

#拦截器加载
requestFilter.before_action


8 请求对象request和返回对象Response
请求对象request,使用前先导入request模块

from flask import request

获取url请求参数:request.args

获取form表单中的数据:request.form

获取请求体原始数据:request.data

获取文件数据:request.files

获取cookie:request.cookies

获取header信息:request.headers

获取请求方法:request.method

获取请求路径:request.path

Response

视图函数中可以返回的值

可以直接返回字符串,底层将这个字符串封装成了Response对象

元组,响应格式(响应体,状态码,头信息),不一定都要写,底层也是封装了一个Response对象

返回Response或其子类(jsonify子类返回标准json)

实现一个自定义Response对象步骤

继承Response对象

实现方法 force_typeforce_type(cls,rv,environ=None)

指定app.response为你定义的类

如果返回的值不是可以返回的对象,就会调用force_type方法

实现

class JSONResponse(Response):
​@classmethoddef force_type(cls, response, environ=None):'''这个方法只有视图函数返回非字符、非元祖、非Response对象才会调用:param response:是视图函数的返回值:param environ::return:'''print(response)print(type(response))if isinstance(response,(list,dict)):
​#jsonify除了将字典转换成json对象,还将对象包装成了一个Response对象response = jsonify(response)
​return super(JSONResponse,cls).force_type(response,environ) app.response_class = JSONResponse

9 异常捕获及自定义异常
捕获错误

errorhandler 装饰器

注册一个错误处理程序,当程序抛出指定错误状态码的时候,就会调用该装饰器所装饰的方法

参数:

code_or_exception – HTTP的错误状态码或指定异常

例如统一处理状态码为500,404的错误给用户友好的提示:

@app.errorhandler(500)
def internal_server_error(e):return '服务器搬家了哈哈哈'
​
@app.errorhandler(404)
def internal_server_error(e):return '瞎请求什么路径呢'


例如自定义错误413

@app.errorhandler(413)
def zero_division_error(e):return '除数不能为0'

异常捕获

abort 方法

抛出一个给定状态代码的 HTTPException 或者 指定响应,例如想要用一个页面未找到异常来终止请求,你可以调用 abort(404)。

参数:

code – HTTP的错误状态码

@index_blu.route("/exception",methods=["POST","GET"])
def exception():logging.info("come to exception")try:print(2)a=3/0except:abort(413)return "ooooo"

10 上下文 

上下文:即语境,语意,在程序中可以理解为在代码执行到某个时刻,根据之前代码锁做的操作以及下文即将要执行的逻辑,可以决定在当前时刻下可以使用到的变量,或者可以做的事情。

Flask中有两种上下文:请求上下文(request context)和应用上下文(application context)。

Flask中上下文对象:相当于一个容器,保存了Flask程序运行过程中的一些信息。

1.application指的是当你调用app = flask(name)创建的这个对象app。 2.request指的是每次http请求发生时,WSGI server(比如gunicorn)调用Flask.call()之后,在Flask对象内部创建的Request对象; 3.application表示用于相应WSGI请求的应用本身,request表示没出http请求; 4.appliacation的生命周期大于request,一个application存活期间,可能发生多次http请求,所以,也就会有多个request;

请求上下文(request context):在Flask中,可以直接在视图函数中使用request这个独享进行获取先关数据,而request就是请求上下文的对象,保存了当前本次请求的相关数据,请求上线文对象有:request、session

request:封装了HTTP请求的内容,针对的是http请求。例如:user = request.args.get('user'),获取的是get请求的参数。

session:用来记录请求会话中的信息,针对的是用户信息。例如:session['name'] = user.id 科可以记录用户信息。还可以通过session.get('name')获取用户信息。

应用上下文(application context):它不是一直存在的,它只是request context中的一个对app的代理,所谓的local proxy。它的作用主要是帮助request获取当前的应用,它是伴request而生,随request而灭的。

应用上下文对象有:current_app,g

current_app:应用程序上下文,用于存储应用程序中的变量,可以通过current_app.name打印当前app的名称,也可以在current_app中存储一些变量,例如:

应用的启动脚本是哪个文件,启动时指定了哪些参数

加载了哪些配置文件,导入了哪些配置

连接了哪个数据库

有哪些可以调用的工具类、常量

当前flask应用在哪个机器上,哪个IP上运行,内存多大

current_app.name
current_app.test_value='value'

g变量:g 作为 flask 程序全局的一个临时变量,充当者中间媒介的作用,我们可以通过它传递一些数据,g 保存的是当前请求的全局变量,不同的请求会有不同的全局变量,通过不同的thread id区别

g.name='abc'
注意:不同的请求,会有不同的全局变量

两者的区别:

请求上下文:保存了客户端和服务器交互的数据

应用上下文:flask 应用程序运行过程中,保存的一些配置信息,比如程序名、数据库连接、应用信息等

11 部署
gunicorn作为服务器,安装gunicorn

pip3 install gunicorn

启动

gunicorn -w 3 -b 127.0.0.1:8000 app:app

-w 处理进程数

-b 运⾏主机ip端⼝

dpj.wsgi 项⽬的wsgi

gunicorn常⽤配置

-c CONFIG : CONFIG,配置⽂件的路径,通过配置⽂件启动;⽣产环境使⽤; 
​
-b ADDRESS : ADDRESS,ip加端⼝,绑定运⾏的主机; 
​
-w INT, --workers INT:⽤于处理⼯作进程的数量,为正整数,默认为1; 
​
-k STRTING, --worker-class STRTING:要使⽤的⼯作模式,默认为sync异步,可以下载 
​
eventlet和gevent并指定 
​
--threads INT:处理请求的⼯作线程数,使⽤指定数量的线程运⾏每个worker。为正整数,默认为1。 
​
--worker-connections INT:最⼤客户端并发数量,默认情况下这个值为1000。 
​
--backlog int:未决连接的最⼤数量,即等待服务的客户的数量。默认2048个,⼀般不修改; 
​
-p FILE, --pid FILE:设置pid⽂件的⽂件名,如果不设置将不会创建pid⽂件 
​
--access-logfile FILE : 要写⼊的访问⽇志⽬录--access-logformat STRING:要写⼊的访问⽇志格式 
​
--error-logfile FILE, --log-file FILE : 要写⼊错误⽇志的⽂件⽬录。 
​
--log-level LEVEL : 错误⽇志输出等级。 
​
--limit-request-line INT : HTTP请求头的⾏数的最⼤⼤⼩,此参数⽤于限制HTTP请求⾏的允 
​
许⼤⼩,默认情况下,这个值为4094。值是0~8190的数字。 
​
--limit-request-fields INT : 限制HTTP请求中请求头字段的数量。此字段⽤于限制请求头字 
​
段的数量以防⽌DDOS攻击,默认情况下,这个值为100,这个值不能超过32768 
​
--limit-request-field-size INT : 限制HTTP请求中请求头的⼤⼩,默认情况下这个值为8190 
​
字节。值是⼀个整数或者0,当该值为0时,表示将对请求头⼤⼩不做限制 
​
-t INT, --timeout INT:超过这么多秒后⼯作将被杀掉,并重新启动。⼀般设定为30秒; 
​
--daemon: 是否以守护进程启动,默认false; 
​
--chdir: 在加载应⽤程序之前切换⽬录; 
​
--graceful-timeout INT:默认情况下,这个值为30,在超时(从接收到重启信号开始)之后仍然活着 
​
的⼯作将被强⾏杀死;⼀般使⽤默认; 
​
--keep-alive INT:在keep-alive连接上等待请求的秒数,默认情况下值为2。⼀般设定在1~5秒之 
​
间。 
​
--reload:默认为False。此设置⽤于开发,每当应⽤程序发⽣更改时,都会导致⼯作重新启动。 
​
--spew:打印服务器执⾏过的每⼀条语句,默认False。此选择为原⼦性的,即要么全部打印,要么全部 
​
不打印; 
​
--check-config :显示现在的配置,默认值为False,即显示。 
​
-e ENV, --env ENV: 设置环境变量;

本次分享到此结束,觉得有所帮助的朋友点点关注点点赞!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/43276.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2021版本的idea热部署的详细步骤

背景&#xff1a;我是自己用的是2021版本的idea,然后发现跟2023版本的热部署不太一样&#xff0c;所以&#xff0c;今天自己出一期这样的文章吧&#xff01;&#xff01;&#xff01;其他人配置的时候根据自己的情况&#xff0c;来阅读吧&#xff01; 第一步&#xff1a;方式一…

MyBatis是如何分页的及原理

MyBatis 是一种持久层框架&#xff0c;支持通过配置文件和注解将 SQL 映射为 Java 对象。在实际开发中&#xff0c;查询数据时经常需要进行分页处理。 MyBatis 也提供了支持分页的方案&#xff0c;其主要思路是使用 Limit 偏移量和限制个数&#xff0c;来获取指定数量的数据。下…

音视频入门基础:H.264专题(10)——FFmpeg源码中,存放SPS属性的结构体和解码SPS的函数分析

一、引言 FFmpeg源码对AnnexB包装的H.264码流解码过程中&#xff0c;通过ff_h2645_extract_rbsp函数拿到该H.264码流中的某个NALU的NALU Header RBSP后&#xff08;具体可以参考&#xff1a;《FFmpeg源码&#xff1a;ff_h2645_extract_rbsp函数分析》&#xff09;&#xff0c…

【沐风老师】3DMAX建筑体块生成插件BuildingBlocks使用方法详解

BuildingBlocks建筑体块生成插件使用方法详解 听说你还在手动建配景楼&#xff1f;有了BuildingBlocks这个插件&#xff0c;一分钟搞定喔&#xff01; 3DMAX建筑体块生成插件BuildingBlocks&#xff0c;用于快速自定义街道及生成配景楼区块。 【适用版本】 3dMax2019及更高版…

分布式I/O从站的认知

为什么需要分布式I/O从站&#xff1f; 当PLC与控制机构距离过远时&#xff0c;远距离会带来信号干扰&#xff0c;分布式I/O从站只需要一个网络线缆连接。 ET200分布式I/O从站家族 体积紧凑、功能强大。 ET200SP ET200M ET200S ET200iSP ET200 AL ET200pro ET200 eco PN 通讯协议…

DSSM双塔特征交互

传统的DSSM双塔无法在早期进行user和item侧的特征交互&#xff0c;这在一定程度上降低了模型性能。我们想要对双塔模型进行细粒度的特征交互&#xff0c;同时又不失双塔模型离线建向量索引的解耦性。下面介绍两篇这方面的工作。 美团-Dual Augmented Two-tower 在user和item的特…

1. CSS Grid 网格布局教程

CSS Grid 网格布局教程 一、概述 网格布局&#xff08;Grid&#xff09;是最强大的 CSS 布局方案。 它将网页划分成一个个网格&#xff0c;可以任意组合不同的网格&#xff0c;做出各种各样的布局。以前&#xff0c;只能通过复杂的 CSS 框架达到的效果&#xff0c;现在浏览器…

Scrapy crawl spider 停止工作

Scrapy是一个用于爬取网站数据的流行框架&#xff0c;有时爬虫可能会停止工作&#xff0c;这通常是由多种原因引起的。以下是一些常见问题及其解决方法&#xff1a; 1、问题背景 用户在使用 Scrapy 0.16.2 版本进行网络爬取时遇到问题&#xff0c;具体表现为爬虫在运行一段时间…

Android 开发中 C++ 和Java 日志调试

在 C 中添加堆栈日志 先在 Android.bp 中 添加 ‘libutilscallstack’ shared_libs:["liblog"," libutilscallstack"]在想要打印堆栈的代码中添加 #include <utils/CallStack.h> using android::CallStack;// 在函数中添加 int VisualizerLib_Crea…

生物素结合金纳米粒子(Bt@Au-NPs ) biotin-conjugated Au-NPs

一、定义与特点 定义&#xff1a;生物素结合金纳米粒子&#xff0c;简称BtAu-NPs或biotin-conjugated Au-NPs&#xff0c;是指通过特定的化学反应或物理方法将生物素修饰到金纳米粒子表面&#xff0c;形成稳定的纳米复合材料。 特点&#xff1a; 高稳定性&#xff1a;生物素的修…

【VUE基础】VUE3第七节—Vue Router路由基础

Vue Router 是 Vue 官方的客户端路由解决方案。 客户端路由的作用是在单页应用 (SPA) 中将浏览器的 URL 和用户看到的内容绑定起来。当用户在应用中浏览不同页面时&#xff0c;URL 会随之更新&#xff0c;但页面不需要从服务器重新加载。 Vue Router 基于 Vue 的组件系统构建&…

LabVIEW在半导体自动化测试中的应用

半导体制造的复杂性和精密度要求极高&#xff0c;每一个生产步骤都需要严格的控制和监测。自动化测试设备在半导体制造中起到了关键作用&#xff0c;通过精密测量和数据分析&#xff0c;确保产品质量和生产效率。本文介绍如何使用LabVIEW结合研华硬件&#xff0c;开发一个用于半…

C语言编程3:运算符,运算符的基本用法

C语言3&#x1f525;&#xff1a;运算符&#xff0c;运算符的基本用法 一、运算符&#x1f33f; &#x1f387;1.1 定义 运算符是指进行运算的动作&#xff0c;比如加法运算符"“&#xff0c;减法运算符”-" 算子是指参与运算的值&#xff0c;这个值可能是常数&a…

自动化测试高级控件交互方法:TouchAction、触屏操作、点按,双击,滑动,手势解锁!

在自动化测试领域中&#xff0c;TouchAction 是一种非常强大的工具&#xff0c;它允许我们模拟用户在设备屏幕上的各种触摸事件。这种模拟不仅限于简单的点击操作&#xff0c;还包括滑动、长按、多点触控等复杂的手势。 点按与双击 点按和双击是触屏设备上最基本的操作之一。…

使用 Qt 和 ECharts 进行数据可视化

文章目录 示例图表预览折线图散点图柱状图使用 Qt 和 ECharts 进行数据可视化一、准备工作1. 安装 Qt2. 准备 ECharts二、在 Qt 中使用 ECharts1. 创建 Qt 项目2. 配置项目文件3. 在 UI 中添加 WebEngineView4. 加载 ECharts三、创建折线图、散点图和柱状图1. 折线图2. 散点图3…

sizeof跟strlen的用法及差异

sizeof是一个操作符&#xff0c;不是函数&#xff1b; 而strlen是一个库函数&#xff1b; sizeof是计算所占内存空间的&#xff0c;不管你内容是什么&#xff0c;只要知道占多少内存&#xff0c; 而strlen是跟内容有关的&#xff0c;它是计算字符串长度的&#xff08;字符数…

java —— tomcat 部署项目

一、通过 war 包部署 1、将项目导出为 war 包&#xff1b; 2、将 war 包放置在 tomcat 目录下的 webapps 文件夹下&#xff0c;该 war 包稍时便自动解析为项目文件夹&#xff1b; 3、启动 tomcat 的 /bin 目录下的 startup.bat 文件&#xff0c;此时即可从浏览器访问项目首页…

【Linux】文件内容查看命令——cat,tac,more,less,head,tail,od

如果我们要查看一个文件的内容时&#xff0c;该如何是好&#xff1f; 这里有相当多有趣的命令可以来分享一下&#xff1a;最常使用的显示文件内容的命令可以说是cat与more及less了。 此外&#xff0c;如果我们要查看一个很大的文件&#xff08;好几百MB时)&#xff0c;但是我们…

使用PyTorch设计卷积神经网络(CNN)来处理遥感图像Indian Pines数据集

目录 使用PyTorch设计卷积神经网络&#xff08;CNN&#xff09;来处理遥感图像Indian Pines数据集&#xff0c;以下是设计和实现这些网络的步骤&#xff1a; 1.数据准备&#xff1a; 1.1 首先&#xff0c;需要加载Indian Pines数据集。 1.2 将数据集转换为PyTorch张量&#x…

LLM推理引擎怎么选?TensorRT vs vLLM vs LMDeploy vs MLC-LLM

LLM擅长文本生成应用程序&#xff0c;如聊天和代码完成模型&#xff0c;能够高度理解和流畅。但是它们的大尺寸也给推理带来了挑战。有很多个框架和包可以优化LLM推理和服务&#xff0c;所以在本文中我将整理一些常用的推理引擎并进行比较。 TensorRT-LLM TensorRT-LLM是NV发布…