【爱上C++】vector用法详解

文章目录

  • 一:vector简介
  • 二:vector的创建和初始化
  • 三:vector的遍历
    • 1.[]+下标
    • 2.at()
    • 3.迭代器遍历
    • 4.范围for
  • 四:vector的空间
    • 1.size
    • 2.max_size
    • 3.capacity
    • 4.reserve
    • 5.resize
    • 6.empty
  • 五:vector的增删查改
    • 1.push_back
    • 2.pop_back
    • 3.find
    • 4.insert
    • 5.erase
    • 6.swap
    • 7.assign

Hello~同学们好,本文将深入探讨 C++ 中的 vector 容器,作为标准模板库(STL)中最常用的动态数组之一,vector 提供了灵活的元素存储和高效的访问方法。我们将从基础知识入手,逐步学习其创建、初始化、遍历、空间管理以及增删查改等操作。通过详细的示例和解析,希望能够帮助读者全面理解和掌握 vector 的使用技巧和注意事项。

一:vector简介

vector文档

  1. vector是表示可变大小数组的序列容器。
  2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。


使用STL的三个境界:能用,明理,能扩展 ,那么下面学习vector,我们也是按照这个方法去学习

二:vector的创建和初始化

要包头文件#include<vector>

    // 默认构造函数,创建一个空的 vectorvector<int> v1; // 创建一个包含 4 个默认初始化元素(值为 0)的 vectorvector<int> v2(4); // 创建一个包含 4 个元素,每个元素初始化为 10 的 vectorvector<int> v3(4, 10); // 使用迭代器范围(v3 的起始和结束迭代器)初始化 vector,v4 将包含 v3 的所有元素vector<int> v4(v3.begin(), v3.end());// 拷贝构造函数,创建一个 v2 的副本vector<int> v5(v2); // 使用初始化列表创建 vector,v6 将包含 1, 2, 3, 4, 5, 6, 7 这些元素vector<int> v6 = {1, 2, 3, 4, 5, 6, 7}; // 使用 std::string 初始化string s1("12345"); // 创建一个包含 "12345" 的字符串 s1// 使用 std::string 的迭代器初始化 std::vector<int>// 这里每个 char 会隐式转换为其对应的 int(ASCII 值)vector<int> v3(s1.begin(), s1.end()); // 使用字符串的迭代器初始化 vector<int>

vector和string的区别:


std::vector:

  • 不自动添加 \0:
    • std::vector 只是一个通用的动态数组容器,它不会在末尾自动添加 \0。你需要手动管理字符串的结束标志。
    • 当你需要将 std::vector 转换为 C 风格字符串时,你必须手动添加一个 \0。


std::string:

  • 自动添加 \0:
    • std::string 在内部管理一个以 \0 结尾的字符数组。这个空字符保证了字符串可以直接使用 C 风格字符串的函数。
    • 当你创建或操作 std::string 对象时,\0 是自动添加和管理的,因此不需要手动处理。

三:vector的遍历

1.[]+下标

image.png

void test_vector1()
{vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);for (size_t i = 0; i < v.size(); i++){cout << v[i] << " ";}cout << endl;
}

看一下结果(push_back后面会将,顾名思义也就是尾插)
image.png
调试一下看看image.png

2.at()

image.png
at() 函数用于访问vector 中的元素,并进行边界检查。与 operator[] 不同,at() 会在访问越界时抛出 std::out_of_range 异常,因此它比 operator[] 更安全,但稍微有点性能开销。

#include <iostream>  // 引入输入输出流头文件
#include <vector>    // 引入 vector 容器头文件
#include <stdexcept> // 引入标准异常头文件
using namespace std; // 使用标准命名空间
int main() {vector<int> vec = { 10, 20, 30, 40, 50 }; // 初始化一个包含五个整数的 vector// 正常访问 vector 的元素try {for (size_t i = 0; i < vec.size(); ++i) {cout << "Element at index " << i << " is " << vec.at(i) << endl; // 使用 at() 函数访问元素}}catch (const out_of_range& e) {cerr << "Out of range error: " << e.what() << endl; // 捕捉并处理越界访问异常}// 尝试访问越界元素try {cout << "Element at index 10 is " << vec.at(10) << endl; // 访问索引为 10 的元素,这将抛出异常}catch (const out_of_range& e) {cerr << "Out of range error————" << e.what() << endl; // 捕捉并处理越界访问异常}return 0; // 返回 0 表示程序正常结束
}

image.png

3.迭代器遍历

iterator的使用接口说明
begin +end(重点)获取第一个数据位置的iterator/const_iterator
获取最后一个数据的下一个位置
的iterator/const_iterator
rbegin + rend获取最后一个数据位置的reverse_iterator
获取第一个数据前一个位置的
reverse_iterator

image.png
迭代器访问+修改

    vector<int> v1;        // 定义一个空的 vector 容器v1.push_back(1);       // 向容器中添加元素 1v1.push_back(2);       // 向容器中添加元素 2v1.push_back(3);       // 向容器中添加元素 3v1.push_back(4);       // 向容器中添加元素 4vector<int>::iterator it = v1.begin(); // 初始化迭代器,指向 vector 的起始位置// 使用 while 循环遍历 vector 的元素while (it != v1.end()) {                // 当迭代器未到达 vector 的末尾时继续循环*it -= 10;                          // 将迭代器指向的元素值减去 10cout << *it << " ";                 // 打印当前元素值it++;                               // 迭代器指向下一个元素}cout << endl;                           // 输出换行符

为什么 while (it != v1.end())不能用 it<v1.end()?
因为在 C++ 中,标准库容器(如 std::vector)的迭代器支持比较操作,但通常是使用 != 而不是 < 来判断迭代器是否已经到达容器的末尾。!= 比较更加直观和符合语义。
使用 < 进行比较可能在某些情况下无效,因为并不是所有迭代器都支持 < 运算符。特别是,对于双向迭代器或更复杂的迭代器(如关联容器中的迭代器),它们不支持这种操作。

注意:vector<int>::iterator it = v1.begin();要用vector::指明是什么类型的迭代器。

4.范围for

void vector_Traversal_test() {vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);// 范围forfor (auto e : v) {cout << e << " ";}cout << endl;for (auto& e : v) {e += 10;cout << e << " ";}cout << endl;//范围for实际上是使用迭代器来遍历容器的
//把上面两个展开其实是下面两个。for (auto it = v.begin(); it != v.end(); ++it){auto e = *it;  // 通过迭代器获取当前元素cout << e << " ";}cout << endl;for (auto it = v.begin(); it != v.end(); ++it) {auto& e = *it;  // 通过迭代器获取当前元素的引用e += 10;        // 修改元素的值cout << e << " ";}cout << endl;
}

四:vector的空间


size获取数据个数
max_size容器所能容纳的最大元素数量
capacity获取容量大小
resize改变vector的size
reserve改变vector的capacity
empty判断是否为空

1.size

size() 函数返回当前 vector 中的元素个数。

2.max_size

max_size() 函数返回 vector 可以容纳的最大元素数量,这个数量通常是一个非常大的值,取决于系统限制和内存可用性。

3.capacity

capacity() 函数返回当前 vector 内部存储空间的容量,即在重新分配之前可以存储的元素数量。

4.reserve

reserve(n) 函数用于请求 vector 预留足够的存储空间,以容纳至少 n 个元素。这样做可以减少因为容器扩展而导致的重新分配操作,提高插入元素的效率。
如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够,就可以避免边插入边扩容导致效率低下的问题了

void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

5.resize

resize() 函数用于改变 vector 的大小,即容器中元素的数量。它可以根据传入的参数 n,进行不同的操作:

  1. 当 n < size 时
    • 容器尾部多余的元素会被销毁。
    • capacity 不会改变。
  2. 当 size <= n <= capacity 时
    • 容器尾部新增加的元素被初始化为默认值(对于 int 类型,默认值是 0)。
    • capacity 不会改变。
  3. 当 n > capacity 时
    • 容器尾部新增加的元素被初始化为默认值。
    • size 和 capacity 都会变为 n,并且需要重新分配内存来扩展容器的存储空间。

6.empty

empty() 函数检查 vector 是否为空,如果 vector 中没有元素,则返回 true,否则返回 false。

五:vector的增删查改

push_back尾插
pop_back尾删
find查找(注意这个是算法模块实现,不是vector的成员接口)
insert在pos位置之前插入数据
erase删除pos位置的数据
swap交换两个vector的数据空间
assign用于将新值分配给向量的元素,替换当前内容,并修改向量的大小

1.push_back

	vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);for (auto e : v){cout << e << " ";}cout << endl;vector<string> v1;v1.push_back(" we");v1.push_back(" all");v1.push_back(" love");v1.push_back(" C++");for (auto e : v1){cout <<e;}cout << endl;

image.png

2.pop_back

void test_vector5() {vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);for (auto e : v) cout << e << " "; cout << endl;v.pop_back();   // 尾删:3for (auto e : v) cout << e << " "; cout << endl;v.pop_back();   // 尾删:2for (auto e : v) cout << e << " "; cout << endl;
}

3.find

思考:为什么string、map、set、都有自己的find而vector和list没有?


为什么 string、map、set 提供 find 操作?

  • std::string
    • std::string 是一个字符序列,提供 find 操作用于子串查找,这是字符串操作中非常常见的需求。
    • 例如,查找某个子串在字符串中的位置。
  • std::map 和 std::set
    • std::map 和 std::set 是关联容器,基于平衡二叉树(如红黑树)实现。
    • find 操作在这些容器中是核心功能,因为它们的主要用途就是快速查找键。
    • std::map 提供键值对的查找,而 std::set 提供唯一键的查找。
    • 这些容器的查找操作效率是 O(log n)。

      为什么 vector 和 list 不提供 find 操作?
  • std::vector
    • std::vector 是一个动态数组,主要用于顺序存储和访问。
    • 查找操作的效率是 O(n),因为需要线性扫描整个数组。
    • 提供 find 操作在效率上不占优势,因此没有直接提供。
  • std::list
    • std::list 是一个双向链表,适用于频繁插入和删除操作。
    • 查找操作的效率同样是 O(n),因为需要线性扫描链表。
    • 和 vector 类似,提供 find 操作在效率上不占优势,因此没有直接提供。
#include <algorithm>
void test_vector9()
{vector<int> v;v.push_back(9);v.push_back(9);v.push_back(6);vector<int>::iterator it = find(v.begin(), v.end(),6);if (it != v.end()){cout << "找到啦" << endl;cout << *it << endl;}
}

4.insert

image.png

void test_vector9()
{vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);v.push_back(6);auto it1 = v.begin() + 2;//在第三个位置插入v.insert(it1, 100);for (auto e : v){cout << e << " ";}//1 2 100 3 4 5 6cout << endl;auto it2 = v.begin() + 4;v.insert(it2, 3, 90);//在第五个位置插入3个90for (auto e : v){cout << e << " ";}//1 2 100 3 90 90 90 4 5 6cout << endl;vector<int> vec1 = { 1, 2, 6 };vector<int> vec2 = { 3, 4, 5 };auto it3 = vec1.begin() + 2; // 在第三个位置插入元素vec1.insert(it3, vec2.begin(), vec2.end()); // 在位置 it 处插入 vec2 的所有元素// 现在 vec1 = {1, 2, 3, 4, 5, 6}
}

注意:pos的类型都是iterator;

5.erase

image.png

    vector<int> v {1, 2, 3, 4, 5};// 删除第三个元素auto it = v.erase(v.begin() + 2);// v = {1, 2, 4, 5}for (auto elem : v) {cout << elem << " ";}cout << endl;// 删除第二个到第四个元素auto first = v.begin() + 1;auto last = v.begin() + 4;v.erase(first, last);// v = {1, 5}for (auto elem : v) {cout << elem << " ";}cout << endl;
//注意:[first,last) 是左闭右开的区间所以last可以取v.begin() + 4
  • 在调用 erase 后,被移除的元素会被析构,相关的内存也会被释放。
  • 对于 erase(iterator first, iterator last),注意 first 和 last 的有效性和顺序,确保不会越界访问或者非法操作。
  • 删除元素后,后续的元素会向前移动填补空缺,保持 vector 的连续性。
  • erase 操作可能会导致迭代器失效,因此在使用返回的迭代器之前,要确保其仍然有效。

迭代器失效问题我会放在vector模拟实现(下一篇文章)详细讲解。

6.swap

std::vector 提供了一个成员函数 swap,用于交换两个 vector 对象的内容。这个操作可以快速地交换两个容器的元素,而不需要复制它们的内容。

    vector<int> v1 {1, 2, 3};vector<int> v2 {4, 5, 6};// 使用 swap 交换两个 vector 的内容v1.swap(v2);cout << "After swapping:\n";cout << "v1: ";for (auto elem : v1) {cout << elem << " ";  //4 5 6}cout << "\nv2: ";for (auto elem : v2) {cout << elem << " ";  //1 2 3}cout << endl;


效果和注意事项

  1. 内容交换:swap 函数会交换两个 vector 对象的所有元素,包括它们的大小(size)和容量(capacity)。
  2. 高效性:swap 操作非常高效,因为它只涉及指针的交换,不需要复制元素。这对于大型的 vector 特别有用,可以在不重新分配内存的情况下快速交换数据。
  3. 迭代器和引用的影响:swap 操作不会使现有的迭代器、引用和指针失效,因此可以安全地在 swap 后继续使用交换后的 vector 对象。
  4. 使用场景:swap 可以用于重新排序或重新组织数据,也可以用于优化内存使用,比如在算法中交换两个 vector 来实现更高效的数据处理流程。
  5. 示例: 上面的示例展示了如何使用 swap 将两个 vector 对象的内容进行交换,从而在输出中显示了交换后的结果。

总之,std::vector 的 swap 函数是一个非常有用的工具,能够快速、高效地交换两个 vector 对象的内容,适合在需要优化内存使用或者重新组织数据时使用。

7.assign

void demonstrate_assign() {// 创建一个空的 vector<int>vector<int> v;// 使用 assign(n, value) 方法赋值v.assign(5, 10); // 用5个10替换当前内容cout << "After v.assign(5, 10): ";for (int i : v) {cout << i << " "; // 输出: 10 10 10 10 10}cout << endl;// 使用 assign(first, last) 方法赋值int arr[] = {1, 2, 3, 4, 5};v.assign(arr, arr + 3); // 用数组的前3个元素替换当前内容cout << "After v.assign(arr, arr + 3): ";for (int i : v) {cout << i << " "; // 输出: 1 2 3}cout << endl;// 使用 vector 的迭代器范围赋值vector<int> v2 = {7, 8, 9};v.assign(v2.begin(), v2.end()); // 用v2的所有元素替换当前内容cout << "After v.assign(v2.begin(), v2.end()): ";for (int i : v) {cout << i << " "; // 输出: 7 8 9}cout << endl;
}

07c03ae6d77b4b153f6d1ec710be7c14_7a80245f0b5f4021a033b3789a9efdeb.png
📜 [ 声明 ] 由于作者水平有限,本文有错误和不准确之处在所难免,
本人也很想知道这些错误,恳望读者批评指正!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/42812.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker nginx mysql redis

启动没有数据卷的nginx docker run -d -p 86:80 --name my-nginx nginx把/etc/nginx中的配置复制到宿主机 docker cp my-nginx:/etc/nginx /home/nginxlkl把/html 中的文件复制到宿主机 docker cp my-nginx:/etc/nginx /home/nginxlkl删除当前镜像 docker rm -f my-nginx重新起…

HarmonyOS ArkUi 字符串<展开/收起>功能

效果图&#xff1a; 官方API&#xff1a; ohos.measure (文本计算) 方式一 measure.measureTextSize 跟方式二使用一样&#xff0c;只是API调用不同&#xff0c;可仔细查看官网方式二 API 12 Preview Component export struct CustomTextSpan {State maxLines: number 1/…

迭代器模式(大话设计模式)C/C++版本

迭代器模式 C #include <iostream> #include <string> #include <vector>using namespace std;// 迭代抽象类,用于定义得到开始对象、得到下一个对象、判断是否到结尾、当前对象等抽象方法&#xff0c;统一接口 class Iterator { public:Iterator(){};virtu…

作为产品经理,如何用大模型给我们赋能?非常详细,收藏我这篇就够了

作为一名产品经理&#xff0c;如果您考虑转行至大模型领域&#xff0c;您将能够将产品管理技能与大模型技术相结合&#xff0c;从而在产品开发和创新方面获得一系列好处。以下是转行大模型对产品经理的一些潜在益处&#xff1a; 更深入的技术理解&#xff1a;了解大模型技术将…

使用 Python 处理 Lumerical 导出的 .txt 文件(完结)

使用 Python 处理 Lumerical 导出的 .txt 文件 引言正文以 , 隔开的波长与透射率以 \t 隔开的波长与透射率引言 之前在 添加链接描述 一文中我们已经介绍了如何将 Lumerical 仿真中的 S 参数相关数据导出为 .txt 文件。这里我们来分享如何使用 Python 对这些数据进行处理。 正…

如果国产BI工具也有顶流,它们一定会上榜

在数据驱动的今天&#xff0c;商业智能&#xff08;BI&#xff09;工具已成为企业不可或缺的助手&#xff0c;它们通过强大的数据处理和分析能力&#xff0c;帮助企业洞察市场趋势&#xff0c;优化运营决策。如果BI工具界也有“顶流”&#xff0c;那么奥威BI、帆软BI&#xff0…

我国甜菜碱行业规模较大 未来行业发展前景较好

我国甜菜碱行业规模较大 未来行业发展前景较好 甜菜碱化学名称三甲基甘氨酸&#xff0c;是一种在动植物体内广泛存在的季铵型生物碱。它具有多种生物学功能&#xff0c;包括渗透调节、甲基供体等&#xff0c;广泛应用于饲料、食品、医药和化妆品等行业。甜菜碱的提取主要来源于…

揭秘SmartEDA:电路仿真软件如何贯穿课前课中课后,助力电子学习新纪元!

在电子设计与自动化的学习道路上&#xff0c;一款强大的电路仿真软件往往能为学生们带来事半功倍的效果。今天&#xff0c;我们就来深入探讨一下SmartEDA这款电路仿真软件在课前、课中、课后的全方位应用&#xff0c;看看它如何助力我们的电子学习步入新纪元&#xff01; 1、课…

直播平台集成美颜工具详解:视频美颜SDK开发指南

本篇文章&#xff0c;小编将详细介绍如何在直播平台中集成美颜工具&#xff0c;帮助开发者更好地理解视频美颜SDK的开发过程。 一、美颜工具的作用和原理 1.1 美颜工具的作用 美颜工具主要用于提升直播视频的画面质量&#xff0c;让主播和观众在镜头前看起来更加美观。这些功…

2024年最新ComfyUI汉化及manager插件安装详解!

前言 在ComfyUI文生图详解中&#xff0c;学习过如果想要安装相应的模型&#xff0c;需要到模型资源网站&#xff08;抱抱脸、C站、魔塔、哩布等&#xff09;下载想要的模型&#xff0c;手动安装到ComfyUI安装目录下对应的目录中。 为了简化这个流程&#xff0c;我们需要安装Co…

MacOS下更新curl

苹果自带的curl不支持Https&#xff0c;我们可以通过curl -V看到如下结果 curl 7.72.0 (x86_64-apple-darwin18.6.0) libcurl/7.72.0 zlib/1.2.12 libidn2/2.3.7 librtmp/2.3 Release-Date: 2020-08-19 Protocols: dict file ftp gopher http imap ldap ldaps pop3 rtmp rtsp …

Java数据结构9-排序

1. 排序的概念及引用 1.1 排序的概念 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有相同的关键字的记录…

认证资讯|Bluetooth SIG认证

在当今高度互联的世界中&#xff0c;无线技术的普及已经成为我们生活和工作中不可或缺的一部分。作为领先的无线通信技术之一&#xff0c;Bluetooth技术以其稳定性、便捷性和广泛的应用场景而备受青睐。然而&#xff0c;要想在激烈的市场竞争中脱颖而出&#xff0c;获得Bluetoo…

6、Redis系统-数据结构-04-Hash

四、哈希表&#xff08;Hashtable&#xff09; 哈希表是一种高效的键值对数据结构&#xff0c;通过散列函数将键映射到表中的位置&#xff0c;实现快速的插入、删除和查找操作。Redis 广泛使用哈希表来实现 Hash 对象和数据库的键值存储。以下将从结构设计、哈希冲突与链式哈希…

深入源码,探究#、$号替换符的区别

在Mybatis的日常使用过程中以及在一些技术论坛上我们都能常常听到&#xff0c;不要使用$符号来进行SQL的编写&#xff0c;要使用#符号&#xff0c;否则会有SQL注入的风险。那么&#xff0c;为什么在使用$符号时会有注入的风险呢&#xff0c;以及#号为什么不会有风险呢&#xff…

Python结合MobileNetV2:图像识别分类系统实战

一、目录 算法模型介绍模型使用训练模型评估项目扩展 二、算法模型介绍 图像识别是计算机视觉领域的重要研究方向&#xff0c;它在人脸识别、物体检测、图像分类等领域有着广泛的应用。随着移动设备的普及和计算资源的限制&#xff0c;设计高效的图像识别算法变得尤为重要。…

设计模式-结构型-08-组合模式

文章目录 1、学校院系展示需求2、组合模式基本介绍3、组合模式示例3.1、 解决学校院系展示&#xff08;透明模式1&#xff09;3.2、高考的科目&#xff08;透明模式2&#xff09;3.3、高考的科目&#xff08;安全组合模式&#xff09; 4、JDK 源码分析5、注意事项和细节 1、学校…

存储过程编程-创建(CREATE PROCEDURE)、执行(EXEC)、删除(DROP PROCEDURE)

一、定义 1、存储过程是在SQL服务器上存储的已经编译过的SQL语句组。 2、存储过程分为三类&#xff1a;系统提供的存储过程、用户定义的存储过程和扩展存储过程 &#xff08;1&#xff09;系统提供的存储过程&#xff1a;在安装SQL Server时&#xff0c;系统创建了很多系统存…

AI机器人在企业拓客上常见的功能有哪些

AI机器人具备多种功能&#xff0c;这些功能主要基于其被设计和训练的目的。整理了一些常见的AI机器人功能&#xff1a; 1. 语音识别与自然语言处理&#xff1a; - 语音识别&#xff1a;将用户的语音输入转换为文本&#xff0c;以便机器人可以理解和处理。 - 自然语言处理…

QCC5181 歌词歌曲名多国语言显示替代QCC5125 CSR8675

QCC518X作为Qualcomm新一代蓝牙技术芯片&#xff0c;支持最新蓝牙协议V5.4&#xff0c;较QCC512X系列&#xff0c;它有更强大的DSP、CPU。除支持USB、I2S、SPDIF等接口外&#xff0c;还扩展了LE Audio功能&#xff0c;扩展支持AptX Lossless。以5181为例&#xff0c;我们还扩展…