JavaScript算法描述【排序与搜索】六大经典排序|合并两个有序数组|第一个错误的版本

在这里插入图片描述

🐧主页详情:Choice~的个人主页
📢作者简介:🏅物联网领域创作者🏅 and 🏅阿里专家博主🏅 and 🏅华为云享专家🏅
✍️人生格言:最慢的步伐不是跬步,而是徘徊;最快的脚步不是冲刺,而是坚持。
🧑‍💻人生目标:成为一名合格的程序员,做未完成的梦:实现财富自由。
🚩技术方向:NULL
🀄如果觉得博主的文章还不错的话,请三连支持一下博主哦

🏫系列专栏(免费):
1️⃣ C语言进阶
2️⃣ 数据结构与算法(C语言版)
3️⃣ Linux宝典
4️⃣ C++从入门到精通
5️⃣ C++从入门到实战
6️⃣ JavaScript从入门到精通
7️⃣101算法JavaScript描述
8️⃣微信小程序零基础开发
9️⃣牛客网刷题笔记
🔟计算机行业知识(补充)

文章目录

  • 排序与搜索
    • 算法复杂度
    • 冒泡排序(Bubble Sort)
      • 实现原理
      • 代码
    • 选择排序(Selection Sort)
    • 插入排序(Insertion Sort)
      • 希尔排序(Shell Sort)
      • 快速排序(Quick Sort)
      • 归并排序(Merge Sort)
  • 合并两个有序数组、第一个错误的版本
    • 合并两个有序数组
      • 方法一 双指针 从前往后遍历
      • 详解
      • 方法二 双指针 从后往前遍历
      • 方法三 利用 array.sort()方法
    • 第一个错误的版本
      • 方法一 暴力法[超出时间限制]
      • 方法二 二分法

排序与搜索

排序算法(sorting algorithm)是一种能将一串数据依照特定顺序进行排列的一种算法。

排序算法的一个指标是稳定性,稳定性即:如果只按照第一个数字排序的话,第一个数字相同而第二个数字不同的,第二个数字按照原有排序的就是稳定排序,不按照原有排序的就是不稳定排序。

算法复杂度

排序方法时间复杂度(平均)时间复杂度(最坏)时间复杂度(最好)空间复杂度稳定性
冒泡排序O(n^2)O(n2)O(n^2)O(n2)O(n)O(n)O(1)O(1)稳定
选择排序O(n^2)O(n2)O(n^2)O(n2)O(n^2)O(n2)O(1)O(1)不稳定
插入排序O(n^2)O(n2)O(n^2)O(n2)O(n)O(n)O(1)O(1)稳定
希尔排序O(n^{1.3})O(n1.3)O(n^2)O(n2)O(n)O(n)O(1)O(1)不稳定
快速排序O(nlog_2{n})O(nlog2n)O(n^2)O(n2)O(nlog_2{n})O(nlog2n)O(nlog_2{n})O(nlog2n)不稳定
归并排序O(nlog_2{n})O(nlog2n)O(nlog_2{n})O(nlog2n)O(nlog_2{n})O(nlog2n)O(n)O(n)稳定

冒泡排序(Bubble Sort)

我们先来了解一下冒泡排序算法,虽然比较容易实现,但是比较慢。之所以称之为冒泡排序是因为使用这种排序算法时,像气泡一样从数组的一端冒到另一端。

实现原理

  • 每次比较,相邻的元素,如果第一个比第二个大,就交换两个元素的位置
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;

image-20220820172943250

[^重复 1 - 5]:

代码

function bubbleSort(arr) {const len = arr.length;for (let i = 0; i < len - 1; i++) {for (let j = 0; j < len - 1 - i; j++) {if (arr[j] > arr[j+1]) {const temp = arr[j+1];arr[j+1] = arr[j];arr[j] = temp;}}}return arr;
}

选择排序(Selection Sort)

选择排序是一种简单直观的排序算法。选择排序从数组的开头开始,将第一个元素和其他元素进行比较,检查完所有元素后最小的元素会被放到数组的第一个位置,然后从第二个元素开始继续。这个过程一直进行到数组的倒数第二个位置。

image-20220820172949645

function selectionSort(arr) {const len = arr.length;let minIndex;let temp;for (let i = 0; i < len - 1; i++) {minIndex = i;for (let j = i + 1; j < len; j++) {if (arr[j] < arr[minIndex]) { minIndex = j; // 保存最小数的索引}}temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}return arr;
}

插入排序(Insertion Sort)

插入排序类似于按首字母或者数字对数据进行排序。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

image-20220820172955503

function insertionSort(arr) {const len = arr.length;let preIndex;let current;for (let i = 1; i < len; i++) {preIndex = i - 1;current = arr[i];// 大于新元素,将该元素移到下一位置while (preIndex >= 0 && arr[preIndex] > current) {arr[preIndex + 1] = arr[preIndex];preIndex--;}arr[preIndex + 1] = current;}return arr;
}

希尔排序(Shell Sort)

希尔排序之所以叫希尔排序,因为它就希老爷子(Donald Shell)创造的。希尔排序对插入做了很大的改善。核心理念与插入排序的不同之处在于,它会优先比较距离较远的元素,而不是相邻的元素。当开始用这个算法遍历数据集时,所有元素之间的距离会不断减少,直到处理到数据的末尾。

image-20220820173010467

function shellSort(arr) {const len = arr.length;let gap = Math.floor(len / 2);while (gap > 0) {for (let i = gap; i < len; i++) {const temp = arr[i];let j = i;while (j >= gap && arr[j - gap] > temp) {arr[j] = arr[j - gap];j -= gap;}arr[j] = temp;}gap = Math.floor(gap / 2);}return arr;
}

快速排序(Quick Sort)

快速排序一般用来处理大数据集,速度比较快。快速排序通过递归的方式,将数据依次分为包含较小元素和较大元素的不同子序列。

实现原理

这个算法首先要在列表中选择一个元素作为基准值,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面。这个基准值一般有 4 种取法:

  • 无脑拿第一个元素
  • 无脑拿最后一个元素
  • 无脑拿中间的元素
  • 随便拿一个

下面的解法基于取最后一个元素实现:

image-20220820173016649

function partition(arr, low, high) {let i = low - 1; // 较小元素的索引const pivot = arr[high];for (let j = low; j < high; j++) {// 当前的值比 pivot 小if (arr[j] < pivot) {i++;[arr[i], arr[j]] = [arr[j], arr[i]] }}[arr[i + 1], arr[high]] = [arr[high], arr[i + 1]]return i + 1;
}function quickSort(arr, low, high) {if (low < high) {const pi = partition(arr, low, high) quickSort(arr, low, pi - 1) quickSort(arr, pi + 1, high) }return arr;
}

归并排序(Merge Sort)

归并排序是把一系列排好序的子序列合并成一个大的完整有序序列。

实现原理

把长度为 n 的输入序列分成两个长度为 n / 2 的子序列,载 对这两个子序列分别采用归并排序,最后将两个排序好的子序列合并成一个最终的排序序列。

image-20220820173020600

代码

function mergeSort(arr) {const len = arr.length;if (arr.length > 1) {const mid = Math.floor(len / 2); // 对半分const L = arr.slice(0, mid);const R = arr.slice(mid, len);let i = 0;let j = 0;let k = 0;mergeSort(L); // 对左边的进行排序mergeSort(R); // 对右边的进行排序while (i < L.length && j < R.length) {if (L[i] < R[j]) {arr[k] = L[i];i++;} else {arr[k] = R[j];j++}k++;}// 检查是否有剩余项while (i < L.length) {arr[k] = L[i];i++;k++;}while (j < R.length) {arr[k] = R[j];j++;k++;}}return arr;
}

本章节将分为 3 个部分:

  • Part 1
    • 合并两个有序数组 🌟
    • 第一个错误的版本 🌟
    • 搜索旋转排序数组 🌟🌟
  • Part 2
    • 在排序数组中查找元素的第一个和最后一个位置 🌟🌟
    • 数组中的第K个最大元素 🌟🌟
    • 颜色分类 🌟🌟
  • Part 3
    • 前K个高频元素 🌟🌟
    • 寻找峰值 🌟🌟
    • 合并区间 🌟🌟
  • Part 4
    • 搜索二维矩阵 || 🌟🌟
    • 计算右侧小于当前元素的个数 🌟🌟

合并两个有序数组、第一个错误的版本

合并两个有序数组

给定两个有序整数数组 nums1 和 nums2,将 nums2 合并到 nums1 中,使得 num1 成为一个有序数组。

说明:

初始化 nums1 和 nums2 的元素数量分别为 m 和 n。 你可以假设 nums1 有足够的空间(空间大小大于或等于 m + n)来保存 nums2 中的元素。

示例

输入:
nums1 = [1,2,3,0,0,0], m = 3
nums2 = [2,5,6],       n = 3输出: [1,2,2,3,5,6]

方法一 双指针 从前往后遍历

思路

先简化问题,从合并数组简化成合并两个元素。分别从两个数组中取出一个元素进行比较,比较完后将较小元素合并进结果数组,较大元素继续和另一个数组中取的下一个元素比较,如此循环,直到某个数组中的元素都被比较过时,剩下的数组中未被比较过的元素直接按顺序放到结果数组中。

详解

  1. 定义两个指针 j、k,分别指向当前 nums1 与 nums2 数组中第一个元素的下标,定义一个 result 数组存放合并结果
  2. 比较 nums1[j] 和 nums2[k] 两个元素,将较小元素 push 进 result 中
    1. 指向较小元素的指针加 1,取出上次较大元素继续比较,循环第 2 步
    2. 当某个数组中的元素都被比较过了,将另一数组剩余元素直接 push 到 result 中,因为两个数组都是有序数组,剩下的肯定是较大值

代码

/*** @param {number[]} nums1* @param {number} m* @param {number[]} nums2* @param {number} n* @return {void}*/
const merge = function (nums1, m, nums2, n) {// 暂存 merge 结果const result = [];// 定义两个指针 j、k,分别指向当前 nums1 与 nums2 数组中正在比较值的数组下标,从前往后let j = 0; let k = 0;// 遍历 nums1 和 nums2 数组,遍历完一个数组后跳出循环while (j < m && k < n) {// 比较 nums1 中取的值与 nums2 中取的值,将较小值 push 到结果数组中// 并将下标往后加一,下次循环取后一个值进行比较if (nums1[j] > nums2[k]) {result.push(nums2[k]);k++;} else {result.push(nums1[j]);j++;}}// nums1 或 nums2 中有一个数组未遍历完全if (result.length < m + n) {// 如果 nums1 遍历完了,则说明 nums2 未遍历完全,// 将 nums2 中剩余未比较的数据直接 push 到 merge 结果数组中// 反之亦然if (j === m) {result.push(...nums2.slice(k, n));} else {result.push(...nums1.slice(j, m));}}// 清空 nums1,将 merge 结果 push 到 nums1 中nums1.splice(0, nums1.length);nums1.push(...result);
};

复杂度分析

  • 时间复杂度: O(m + n)O(m+n)

    最多遍历 m + n -1m+n−1 次,所以时间复杂度为 O(m + n)O(m+n)

  • 空间复杂度:O(m)O(m)

    开辟新的空间存放 nums1 数组,所以空间复杂度为 O(m)O(m)

方法二 双指针 从后往前遍历

思路

先简化问题,从合并数组简化成合并两个元素。因为 nums1 数组长度可以存放最后排序好的元素,所以可以从后往前取两个数组的元素进行比较,从 nums1 数组的最后开始存放较大元素。较小值继续与新取出的元素进行比较,如此循环直到某个数组中的元素全部被比较过,可得最终结果。

详解

1.定义一个指针 p,指向 nums1 数组最后一个位置(m + n - 1)。 2.比较 nums1[m - 1] 和 nums2[n - 1] 两个元素,将较大元素放到 nums1[p] 中 3.指针 p 往前移动一位,,较大元素所在数组往前继续取出一个元素与上次较小元素进行比较,将较大元素放到 nums1[p] 中 4.循环第 3 步,直到某个数组中的元素全部被比较过,因为 nums1 和 nums2 数组都是有序数组,所以另一数组未比较的元素肯定是较小的那部分元素,直接将剩余元素放到 nums1 的头部

代码

/*** @param {number[]} nums1* @param {number} m* @param {number[]} nums2* @param {number} n* @return {void}*/
const merge = function (nums1, m, nums2, n) {let currentInsertIndex = nums1.length - 1;while (currentInsertIndex >= 0 && n > 0 && m > 0) {if (nums1[m - 1] > nums2[n - 1]) {nums1[currentInsertIndex--] = nums1[m - 1];m--;} else {nums1[currentInsertIndex--] = nums2[n - 1];n--;}}// nums2 未遍历完成,将 nums2 中剩余未遍历的数据插入到 nums1 头部// nums1 未遍历完成不用关心,已排序好了if (n > 0) {nums1.splice(0, n, ...nums2.slice(0, n));}
};

复杂度分析

  • 时间复杂度:O(m + n)O(m+n)

    最多遍历 m + n - 1m+n−1 次,所以时间复杂度为 O(m + n)O(m+n)

  • 空间复杂度: O(1)O(1)

    不需要开辟新的空间,所以空间复杂度为 O(1)O(1)

方法三 利用 array.sort()方法

思路

直接合并两个数组并排序

详解

1.将 nums1 后面的占位删除并将 nums2 合并 2.用 array.sort() 方法排序

代码

/*** @param {number[]} nums1* @param {number} m* @param {number[]} nums2* @param {number} n* @return {void}*/
const merge = function (nums1, m, nums2, n) {// 两数组合并,将 nums1 后面的占位删除并放入 nums2nums1.splice(m, n, ...nums2);// 排序nums1.sort((a, b) => a - b);
};

复杂度分析

  • 时间复杂度:O(nlogn)O(nlogn)

    排序在 v8 引擎下的平均时间复杂度为 O(nlogn)O(nlogn)

  • 空间复杂度:O(nlogn)O(nlogn)

    排序在 v8 引擎下的平均空间复杂度为 O(nlogn)O(nlogn)

第一个错误的版本

你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。 假设你有 n 个版本 [1, 2, …, n],你想找出导致之后所有版本出错的第一个错误的版本。 你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。

示例

给定 n = 5,并且 version = 4 是第一个错误的版本。调用 isBadVersion(3) -> false
调用 isBadVersion(5) -> true
调用 isBadVersion(4) -> true所以,4 是第一个错误的版本。

方法一 暴力法[超出时间限制]

思路

直接for循环找第一个错误版本。

代码

const solution = function(isBadVersion) {return function firstBadVersion (n) {for (let i = 1; i < n; i++) {if (isBadVersion(i)) {return i;}}return n;}
};

复杂度分析

  • 时间复杂度:O(n)O(n)

    该方法需要遍历每一个元素,需要耗费O(n)O(n)时间,当遇见版本特别多的时候O(n)的时间,因此改方法时间复杂度为O(n)O(n)。

  • 空间复杂度:O(1)O(1)

    该方法没有申请额外的空间,所以空间复杂度为O(1)O(1)

方法二 二分法

思路

前一种方法需要遍历每一个元素,这样如果元素特别多的时候会耗时过多,这个时候通过二分法也就是折半法(有序数组中查找特定元素的搜索算法)来查找元素。

二分法思路:

  1. 首先,从数组的中间元素开始搜索,如果该元素正好是目标元素,则搜索过程结束,否则执行下一步。

  2. 如果目标元素大于/小于中间元素,则在数组大于/小于中间元素的那一半区域查找,然后重复步骤(1)的操作。

  3. 如果某一步数组为空,则表示找不到目标元素。

    这样可以避免无差别遍历降低遍历耗时。

详解

  1. 确定数组左边边界值和右边边界值,找到边界值的中间值
  2. 比较中间值是否是错误版本,如果是则右边边界值=中间值-1,再找中间值比较。如果不是错误版本则左侧边界值=中间值+1,再找左侧值和右侧值之间的中间值比较,这样重复下去
  3. 当左侧边界值>右侧边界值得时候,说明右侧已经全是错误版本了,当前左侧的值就是临界值

代码

const solution = function(isBadVersion) {return function firstBadVersion (n) {let left = 1;let right = n;while (left <= right) {const mid = Math.floor(left + (right - left) / 2);if (isBadVersion(mid)) {right = mid - 1;} else {left = mid + 1;}}return left;}
}

复杂度分析

  • 时间复杂度为: O(\log_2(n))O(log2(n))

    对于n个元素的情况(去掉常数)

    第一次二分:n/2n/2

    第二次二分:n/2^2= n/4n/22=n/4、…

    m次二分:n/(2^m)n/(2m)

    在最坏情况下是在排除到只剩下最后一个值之后得到结果,所以为n/(2^m)n/(2m)=1,得到 2^m=n2m=n

    所以时间复杂度为:O(\log_2(n))O(log2(n))

  • 空间复杂度:O(1)O(1) 该方法没有申请额外的空间,所以空间复杂度为O(1)O(1)

  • 如果对大家有帮助,请三连支持一下!

  • 有问题欢迎评论区留言,及时帮大家解决!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/3913.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【智能算法】囊状虫群算法(TSA)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2020年&#xff0c;S Kaur等人受到囊状虫群自然行为启发&#xff0c;提出了囊状虫群算法&#xff08;Tunicate Swarm Algorithm, TSA&#xff09;。 2.算法原理 2.1算法思想 TSA模拟了囊状虫群在导…

VTK----VTK数据结构详解3(代码篇)

上篇文章&#xff08;VTK----VTK数据结构详解&#xff08;计算机篇&#xff09;-CSDN博客&#xff09;从计算机数据结构&#xff08;数组、链表等&#xff09;的角度对数据数组、数据对象、数据属性的实现原理进行了说明&#xff0c;下面从代码的层面详细说明它们的使用及相关实…

nginx 交叉编译,启动报错nginx: [emerg] getgrnam(“nogroup“) failed 的原因和解决办法

目录 一、错误提示 nginx: [emerg] getgrnam("nogroup") failed二、解决办法三、测试 一、错误提示 nginx: [emerg] getgrnam(“nogroup”) failed nginx 交叉编译&#xff0c;在开发板上启动报错 nginx: [emerg] getgrnam("nogroup") failed二、解决办法…

笔记本硬盘坏了怎么把数据弄出来 笔记本硬盘数据恢复一般需要多少钱

现在办公基本都离不开笔记本电脑&#xff0c;就连学生写作业也大多是都在电脑上完成。硬盘作为电脑存储的重要组成部分&#xff0c;承载着存储文件和各类软件的重任。如果硬盘出现故障&#xff0c;基本上这台电脑就无法正常工作&#xff0c;同时我们可能面临丢失很多重要的数据…

电气设备绝缘的高电压试验(二)——高电压的测量

本篇为本科课程《高电压工程基础》的笔记。 本篇为这一单元的第二篇笔记。上一篇传送门。 稳态高电压的测量 稳态高电压主要指的是工频交流高压和直流高压。高压测量系统常常含有转换装置、转换装置到试验品之间的引线、接地连线、低压测量回路和测量仪表等。 实验室测量方…

【python】语言学习笔记--用来记录总结

请问以下变量哪些是tuple类型&#xff1a; a ()b (1)c [2]d (3,)e (4,5,6)answer在Python中&#xff0c;元组&#xff08;tuple&#xff09;是由逗号分隔的一组值组成的有序序列&#xff0c;通常用圆括号括起来。让我们逐个检查变量&#xff0c;看哪些是元组类型&#xff…

【UE5.1 C++】提升编译速度

步骤 1. 在“C:\Users\用户\AppData\Roaming\Unreal Engine\UnrealBuildTool”目录下找到“BuildConfiguration.xml”文件 打开“BuildConfiguration.xml”&#xff0c;添加如下部分内容 <?xml version"1.0" encoding"utf-8" ?> <Configuratio…

JavaSE字节缓冲流

欢迎来到 请回答1024 的博客 &#x1f353;&#x1f353;&#x1f353;欢迎来到 请回答1024的博客 关于博主&#xff1a; 我是 请回答1024&#xff0c;一个追求数学与计算的边界、时间与空间的平衡&#xff0c;0与1的延伸的后端开发者。 博客特色&#xff1a; 在我的博客中&a…

中移在线ChinaMobile系统单机和分布式应用的登录校验解决方案

单机的Tomcat应用登录校验&#xff1a; 用户首次登录成功后&#xff0c;服务端会创建一个Session会话&#xff0c;客户端会生成一个sessionid&#xff0c;客户端会把sessionid保存到cookie里&#xff0c;每次请求都携带这个sessionid&#xff0c;服务端通过校验来判断是拦截还是…

Vuforia AR篇(四)— AR虚拟按钮

目录 前言一、创建虚拟按钮二、创建脚本三、效果 前言 在当今互联网和移动设备普及的背景下&#xff0c;**增强现实&#xff08;AR&#xff09;**技术正迅速成为连接现实世界与数字信息的重要桥梁。AR虚拟按钮作为这一技术的创新应用&#xff0c;不仅提供了一种全新的用户交互…

mac上安装Tomcat

1. 简介 Tomcat 是一个开源的 Java 服务器&#xff0c;它实现了 Java Servlet、JavaServer Pages&#xff08;JSP&#xff09;和Java WebSocket 技术。Tomcat 是 Apache 软件基金会的一个项目&#xff0c;是一个轻量级、高性能的 Web 容器。作为一个 Web 服务器&#xff0c;To…

go设计模式之抽象工厂模式

抽象工厂模式 提供一个创建一系列相关或相互依赖对象的接口&#xff0c;而无需指定它们具体的类。 工厂方法模式通过引入工厂等级结构&#xff0c;解决了简单工厂模式中工厂类职责太重的问题&#xff0c;但由于工厂方法模式中的每个工厂只生产一类产品&#xff0c;可能会导致…

Angular创建项目

Angular创建项目 文章目录 Angular创建项目1. 创建项目1.1 直接安装1.2 跳过npm i安装 2. 运行程序 1. 创建项目 ng new 项目名称 1.1 直接安装 ng new angulardemo --同时会安装依赖包&#xff0c;执行的命令就是npm i 1.2 跳过npm i安装 ng new angulardemo --skip-inst…

Pytorch 的实际应用 学习笔记

一. 模型的下载 weights为false时则为没有提前经过训练的模型&#xff0c;为true时则经过了提前训练 vgg16_false torchvision.models.vgg16(weightsFalse) vgg16_true torchvision.models.vgg16(weightsTrue) 打印 二. 模型的修改 &#xff08;1&#xff09;添加操作 …

RabbitMQ中的交换机类型

交换机类型 可以看到&#xff0c;在订阅模型中&#xff0c;多了一个exchange角色&#xff0c;而且过程略有变化&#xff1a; Publisher&#xff1a;生产者&#xff0c;不再发送消息到队列中&#xff0c;而是发给交换机 Exchange&#xff1a;交换机&#xff0c;一方面&#xff…

欧科云链:为什么减半对比特币生态的影响正在逐步“减弱”?

出品&#xff5c;OKG Research 作者&#xff5c;Jason Jiang 欧科云链OKLink数据显示&#xff0c;比特币于区块高度840000&#xff08;北京时间2024年4月20日8:09&#xff09;成功完成第四次减半&#xff0c;比特币挖矿奖励正式由6.25BTC减少至3.125BTC。此次减半之后&#x…

Spring MVC系列之九大核心组件

概述 Spring MVC是面试必问知识点其一&#xff0c;Spring MVC知识体系庞杂&#xff0c;有以下九大核心组件&#xff1a; HandlerMappingHandlerAdapterHandlerExceptionResolverViewResolverRequestToViewNameTranslatorLocaleResolverThemeResolverMultipartResolverFlashMa…

中电金信:深度解析|数字化营销运营体系搭建

如何更好更快地梳理好体系搭建思路&#xff0c;稳步实现落地&#xff1f;下文将为大家明确搭建的推进步骤、执行要点&#xff0c;帮助商业银行理顺数字化营销运营体系的“点”“线”“面”~ 与所有转型的曲折、阵痛等特征一样&#xff0c;商业银行构建数字化营销运营体系过程中…

URL路由基础与Django处理请求的过程分析

1. URL路由基础 对于高质量的Web应用来讲&#xff0c;使用简洁、优雅的URL设计模式非常有必要。Django框架允许设计人员自由地设计URL模式&#xff0c;而不用受到框架本身的约束。对于URL路由来讲&#xff0c;其主要实现了Web服务的入口。用户通过浏览器发送过来的任何请求&am…

PyQt5中的QTablewidget

环境 PyQt5 VSCode Qt Designer生成界面 在VSCode的资源管理器中&#xff0c;右键选择 PYQT:New Form&#xff0c;打开Qt Designer 选择新建Dialog without Buttons&#xff0c;点击 创建 在左侧的Item Widgets中将 Table Widget拖入Dialog窗体中。 得到界面 将文件保存…