10 C++11

10 C++11

  • 1、类型推导
    • 1.1 auto关键字
    • 1.2 auto类型推断本质
  • 2、类型计算
    • 2.1 类型计算分类
    • 2.2 类型计算的四种规则
    • 2.3 返回值类型计算
  • 3、列表初始化
  • 4、Lambda表达式
    • 4.1 前置知识
    • 4.2 Lambda表达式
    • 4.3 捕获表
  • 5、右值引用
    • 5.1 概念
    • 5.2 左值引用和右值引用
  • 6、移动语义

1、类型推导

1.1 auto关键字

  • C++98中,auto表示栈变量,通常省略不写
void foo(void){int i;auto int j;//表示在栈里分配的
}
  • C++11中,给auto赋予新的语义,表示自动类型推导
    • 既根据对变量进行初始化时所使用的数据的类型,由编译器自动推导出所定义变量的实际类型
auto i=0; -> int j=10;
auto j=i; -> int j=i;

1.2 auto类型推断本质

·按照定义独立对象并根据初始化数据的类型进行推导。
注意:无法自动推断const,只能自己在auto的上下文显示指明。但是有两种情况是除外的:
1:如果给出的初始化数据类型为常量指针,则可以自动推导出const
2:auto与引用的联合联用
- 按照定义独立对象并根据初始化数据的类型进行推导,所以不可能推导出引用
- 除非auto的上下文指明按照引用推导若指明按引用推导并且目标带有常属性,则可以自动推导const

/*类型推导  
linux 默认是c98标准的,如果需要编译的话需要添加 -std=c++11 
类型推导绝对不是类型照抄
*/
int main(){int a = 10;auto c = a;cout << "c的类型" << typeid(c).name() << endl;// typeid无法获取到对象的常属性c++;// 允许更改,说明不被const修饰cout <<"&c:"<< &c <<"&a:"<< &a << endl;const int b = 20;auto d = b;cout << "d的类型" << typeid(d).name() << endl;cout << "&d:" << &d<< "&b:" << &b << endl;d++;// 允许更改,说明不带constconst auto e = b;// 自己在auto上添加constcout << "e的类型" << typeid(e).name() << endl;cout << "&e:" << &e << "&d:" << &d << endl;// e++;// 不允许更改,说明带constauto f = &b;// 如果初始化数据的类型为常指针,则可以自动推导出constcout << "f的类型为:" << typeid(f).name() << endl;// *f = 888; // *f不允许更改f = NULL; // f是可以更改,说明推导出来的类型是 const int *return 0;
}
/*类型推导和引用的联合使用*/
int main(){int a = 10;const int b = 10;auto & d = a;cout << "d的类型" << typeid(d).name() << endl; cout << "&d:" << &d << "&a:" << &a << endl; // 地址相同,说明是别名d++;auto&e = b; // 这里指明了e是引用推导,并且b带有常属性,则可以自动推导出constcout << "e的类型" << typeid(e).name() << endl;cout << "&e:" << &e << "&b:" << &b << endl;// // 地址相同,说明是别名//e++; // 出错,说明不能更改 那么e的类型为const int &return 0;
}
  • auto关键字的使用限制
    • 1:函数形参类型无法推导(C++14标准支持)。
    • 2:类的成员变量无法推导。
void foo(auto v){}

2、类型计算

2.1 类型计算分类

c语言:sizeof-计算类型的大小
C++语言:typeid-可以获取类型的信息字符串
C++11:decltype-获取参数表达式的类型
注意事项:类型推导和类型计算都是由编译器确定,并不是运行期确定

/*类型计算*/
int main(){const int a = 10;auto  b = a; // 类型推导cout << "b的类型" << typeid(b).name() << endl; cout << "&b:" << &b << "&a:" << &a << endl; b++;// 允许更改,所以推导出来的类型是intdecltype(a)c = 100;// 类型计算 初始值可以设置和a不一样cout << "c的类型" << typeid(c).name() << endl;cout << "&c:" << &c << "&a:" << &a << endl;// // 地址不相同相同// c++; // 出错,说明不能更改 那么c的类型为const int return 0;
}
  • 类型推导和类型计算的比较
    1:类型计算比类型推导在类型的确定上更加精准
    2:类型计算比类型推导在初值的确定上更加灵活

2.2 类型计算的四种规则

  • 1:如果给decltype传递的为标识符表达式,decltype取该标识符的类型作为最终计算出的类型
int main(){int a = 10;// 如果给decltype传递的为标识符表达式,decltype取该标识符的类型作为最终计算出的类型decltype(a)b = a;// 类型计算cout << "b的类型" << typeid(b).name() << endl;cout << "&b:" << &b << "&a:" << &a << endl;// // 地址不相同b++; // 能更改说明b的类型为 int return 0;
}
  • 2:如果给decltype传递的为函数表达式,decltype取该函数的返回值类型作为最终计算出的类型
float foo(){cout << "函数被调用" << endl;return 3.14;
}
int main(){int a = 10;// 如果给decltype传递的为函数表达式,decltype取该函数的返回值类型作为最终计算出的类型decltype(foo())b = a;// 并不会去实际调用foo()函数,类型计算是编译器确定的,不是运行时cout << "b的类型" << typeid(b).name() << endl;cout << "&b:" << &b << "&a:" << &a << endl;// // 地址不相同b++; // 能更改说明b的类型为 float return 0;
}
  • 3:如果给decltype传递的为其他表达式,并且表达式的结果为左值,则取该左值引用的类型作为最终计算出的类型
int main(){int a = 10;// 如果给decltype传递的为其他表达式,并且表达式的结果为左值,则取该左值引用的类型作为最终计算出的类型decltype(++a)b = a;cout << "b的类型" << typeid(b).name() << endl;cout << "&b:" << &b << "&a:" << &a << endl;// // 地址相同b++; //允许更改 说明b的类型为int &return 0;
}
  • 4:如果给decltype传递的为其他表达式,并且表达式的结果为右值,则取该右值本身的类型作为最终计算出的类型
int main(){int a = 10;// 如果给decltype传递的为其他表达式,并且表达式的结果为右值,则取该右值本身的类型作为最终计算出的类型decltype(a++)b = a;cout << "b的类型" << typeid(b).name() << endl;cout << "&b:" << &b << "&a:" << &a << endl;// // 地址不相同b++; //允许更改 说明b的类型为int return 0;
}

2.3 返回值类型计算

  • 返回值类型后置
auto foo(int x, double y)->decltype(x+y){// 返回值类型后置,通过decltype计算得出return  x + y;
}
int main(){auto f = foo(1, 3.1);// 类型推导cout << typeid(f).name() << endl; // double类型return 0;
}

3、列表初始化

基本类型,类类型,结构/联合/枚举类型等等的单个对象或对象数组,都可以采用形式完全统一的列表初始化语法
进行对象的初始化

  • 书写形式:类型 对象 {初值表};
    -int a{123);
    -new double {1.23);
    -string c{“123”};
    -struct Student {d,“张飞”,20,{1997,10,10}};
    -float e[]{1.1,2.2,3.3};
struct BD{int m_year;int m_month;int m_day;
};
struct myStudent{string m_name;int m_age;BD m_body;
};
class Human{
public:Human(int age = 0, const char* name = "无名") :m_age(age), m_name(name){}int m_age;string m_name;
};
int main(){int a = { 123 }; // int a=123cout << "a=" << a << endl;double* pa = new double{ 3.14 };// double *pa = new double(3.14);double *pb{ new double{ 3.14 } };cout << "*pa=" << *pa << " *pb=" << *pb << endl;int b[]{1, 2, 3};//int b[] = { 1, 2, 3 };for (int i = 0; i < 3; i++){ cout << b[i] << ' '; }int *parr{ new int[3]{4, 5, 6} };for (int i = 0; i < 3; i++){ cout << parr[i] << ' '; }delete[]parr;myStudent s{ "zs", 22, { 1997, 5, 7 } }; // myStudent s = { "zs", 22, { 1997, 5, 7 } };cout << s.m_name << s.m_age << s.m_body.m_year << s.m_body.m_month << s.m_body.m_day << endl;Human h{ 20, "赵云" };//Human h (20, "赵云" )cout << h.m_age << h.m_name << endl;return 0;
}
  • 小括号操作符函数
class AA{
public:int operator()(int x, int y){return x + y;}
};
int main(){AA a;cout << a(100, 200) << endl;;// a.operator()(100,200)
}

4、Lambda表达式

4.1 前置知识

在C++中函数的作用域中可以有类型,也可以有表达式

  • 针对于函数内部定义了类型,编译器先编译函数内部的类型,然后在编译函数体本身的代码
int a;
void foo(int b){int c;class A{public:void bar(int d){a = 0;// 能访问// b = 0; // 不能访问// c = 0; // 不能访问d = 0;// 能访问}};
}

4.2 Lambda表达式

  • 语法规则:
[捕获表](参数表)选项->返回类型
{函数体
}
  • 使用
int main(void){int a = 10, b = 20;auto c =[](int x, int y)->int{return x > y ? x : y; };// 编译器 (1) 生成一个类  (2) 类内定义一个小括号操作符函数 (3) 返回这个类的匿名对象cout<<c(a,b)<<endl;return 0;
}
  • 本质
    lambda表达式本质其实是一个类并且最终返回值为这个类的对象,因此对lambda表达式的调用就是该对象的函数操作符的调用
    在这里插入图片描述

解释:编译器在编译到Lambda表达式时,编译器会生成一个类Z4XXX的类,类中定义一个小括号操作函数,函数体里面填充Lambda的函数体内容,函数的返回值类型为Lambda中定义的返回类型。
其中

  • 可以没有返回值类型,将根据return推断
int main(void){int a = 10, b = 20;auto c = [](int x, int y){return x + y; };// 当没有返回值类型时,中间的箭头可以省略cout << c(a, b) << endl;return 0;
}
  • 如果连return也没有,则返回值为void
int main(void){int a = 10, b = 20;[](int x, int y){cout<< x + y<<endl; }(a,b);// 如果连return也没有,则返回值为voidreturn 0;
}
  • 参数为void可以省略不写的
int main(void){int a = 10, b = 20;[]{cout << "12345" << endl; }();// 如果没有形参,返回值类型也为void那么小括号和中间的剪头都可以省略return 0;
}

4.3 捕获表

  • []-不捕获任何外部变量
  • [variable]-捕获外部变量的值
  • [&variable]-按引用捕获,外部变量的别名
  • [this]-捕获this指针,访问外部对象的成员
int a = 10;
class Y{
public:Y(int m_e) :e(m_e){};void foo(int c = 30){cout << "---" << endl;// []-不捕获外部变量的值[](int d = 40){cout << "a=" << a << endl;cout << "b=" << b << endl;// cout << "c=" << c << endl; // 错误cout << "d=" << d << endl;// cout << "e=" << e << endl; // 错误}();cout << "--------------[c]--------" << endl;// [variable]-捕获外部变量只读[c](int d = 0){cout << "c=" << c << endl; }();cout << "--------[&c]---------" << endl;// [&variable]-按引用捕获,外部变量的别名[&c]{c++; cout << "c=" << c << endl; }();cout << c << endl;// [this]-捕获this指针,访问外部对象的成员cout << "--------[this]---------" << endl;[this]{cout << "e=" << e << endl; }();}
private:static int b;int e;
};
int Y::b = 10;int main(){Y y(4);y.foo();return 0;
}
  • [=]-按值捕获所有的外部变量,也包括this
  • [&]-按引用捕获所有的外部变量,也包括his
  • [=,&variable]-按值捕获所有的外部变量包括this,但是指定的外部变量按引用捕获。
  • [&,=variable]-按引用捕获所有的外部变量,也包括this,但是指定的外部变量按值捕获。

5、右值引用

5.1 概念

左值引用是别名,右值引用就是真名
左值:可以“取”地址的值就是左值,左值通常具名
右值:不可“取”地址的值就是右值,右值通常匿名
左值细分为非常左值和常左值
- 非常左值:有名字、可以取地址、没有常属性
- 常左值:有名字、可以取地址、有常属性
右值细分为纯右值和将亡值
- 纯右值:有一块无名内存,里面存放了基本类型的数据
- 将亡值:有一块无名内存,里面存放了类类型的数据

5.2 左值引用和右值引用

  • 左值引用只能引用左值,不能引用右值
  • 右值引用只能引用右值,不能引用左值
  • 常左值引用,既能引用左值,也能引用右值
  • 常右值引用,完全可以被常左值引用替代
/*左值引用和右值引用的差别*/
int main(){// 左值引用只能引用左值,不能引用右值int a=1, c=2;int & ra = a;// int & rb = a + c; // 错误 左值引用不能引用右值int &&rb = a + c;// 使用右值引用// int &&rc = a;// 错误 右值引用只能引用右值,不能引用左值cout << rb << endl;const int & _l = a; // 引用左值const int & _r = a + c; // 引用右值// 常左值引用会丧失修改目标的权限// _l = 9;// 错误// 右值引用不会丧失修改目标的权限rb = 90;cout << rb << endl;
}

6、移动语义

  • 方法:
    资源的转移 代替 资源的重建
  • 作用:
    保证功能正确的情况下,做到性能提升
//深拷贝构造函数 资源的重建String(const String & that) :m_psz(new char[strlen(that.m_psz) + 1]){cout << "深拷贝构造 资源的重建" << endl;strcpy(m_psz, that.m_psz); // 没有复制地址,复制了数据(深拷贝)
}
// 深拷贝构造函数 资源的转移 
String(String && that):m_psz(that.m_psz){that.m_psz = NULL;cout << "资源转移" << endl;
}
// 深拷贝赋值函数 资源的重建String& operator=(/*String* this*/const String & that){cout<<"深拷贝赋值函数 资源的重建"<<endl;if (this == &that){}// 防止出现用户自己给自己赋值else{delete[] this->m_psz;// 编译器会先定义一个m_psz,并初始>化为空串,所以需要先释放内存this->m_psz = new char[strlen(that.m_psz) + 1];// 申请新资源strcpy(m_psz, that.m_psz); // 拷贝新内容}return *this;// 返回自引用
}// 拷贝赋值函数 资源的转移
String& operator=(String&& that){cout<<"拷贝赋值函数 资源的转移"<<endl;delete this->m_psz;this->m_psz=that.m_psz;that.m_psz=NULL;return *this;
}
//在linux下 命令行输入:g++ abc.cpp -std=c++11 -fno-elide-constructors
int main(){ String s1=String("hello"); // 深拷贝构造函数 资源的转移String s2=s1;// 拷贝构造函数 资源的重建s2=s1;// 拷贝赋值函数 资源的重建s2=String("hello");// 拷贝赋值函数 资源的转移
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/28587.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式复古游戏项目开发与实现

大家好,今天看到一个火柴盒项目,非常的小巧,分享给大家,感兴趣的话,可以复刻一个玩一玩。 MicroByte 是一款微型主机,能够运行 NES、GameBoy、GameBoy Color、Game Gear 和 Sega Master 系统的游戏,所有元器件都设计在这 78 x 17 x 40 mm 的封装中。尽管成品尺寸很小,但…

AI预测体彩排3采取888=3策略+和值012路或胆码测试6月16日升级新模型预测第1弹

根据前面的预测效果&#xff0c;我对模型进行了重新优化&#xff0c;因为前面的模型效果不是很好。熟悉我的彩友比较清楚&#xff0c;我之前的主要精力是对福彩3D进行各种模型的开发和预测&#xff0c;排三的预测也就是最近1个月才开始搞的。3D的预测&#xff0c;经过对模型的多…

Java面向对象-接口

Java面向对象-接口 一、JDK1.8之前二、接口的作用三、JDK1.8之后&#xff0c;新增非抽象方法四、静态方法 一、JDK1.8之前 1、类是类&#xff0c;接口是接口&#xff0c;它们是同一层次的概念 2、接口中没有构造器 3、接口如何声明&#xff1a;interface 4、在jdk1.8之前&…

【字符串函数】

1.strlen的使⽤和模拟实现 size_t strlen ( const char * str ); 1.字符串以 \0 作为结束标志&#xff0c;strlen函数返回的是在字符串中 \0 前⾯出现的字符个数&#xff08;不包 含 \0 )。 2.参数指向的字符串必须要以 \0 结束。 3.注意函数的返回值为size_t&#xff0c;是⽆…

力扣148. 排序链表

给你链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [4,2,1,3] 输出&#xff1a;[1,2,3,4] 示例 2&#xff1a; 输入&#xff1a;head [-1,5,3,4,0] 输出&#xff1a;[-1,0,3,4,5] 示例 3&…

23 华三(自动获取的IP地址)

华三交换机 DHCP 配置 #version 7.1.070, Alpha 7170 //设备的版本信息 #sysname sw1 //修改设备的名字 #irf mac-address persistent timerirf auto-update enableundo irf link-delayirf member 1 priority 1#dhcp enable //开启DHCP 服务dhcp server forbidden-ip 192.168.…

.net 调用海康SDK的常用操作封装

&#x1f4e2;欢迎点赞 &#xff1a;&#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff0c;赐人玫瑰&#xff0c;手留余香&#xff01;&#x1f4e2;本文作者&#xff1a;由webmote 原创&#x1f4e2;作者格言&#xff1a;新的征程&#xff0c;我们面对的不仅…

2024/6/16周报

文章目录 摘要Abstract文献阅读题目问题本文贡献方法aGNN输入和输出模块嵌入模块编码器和解码器模块&#xff1a;支持多头注意的GCN多头自注意力机制GCN模型解释&#xff1a;SHAP 案例研究地下水流动与污染物运移模型研究场景设计 数据集实验结果 代码复现结论 摘要 本周阅读了…

whisper 模型源码解读

whisper官方源码 whisper 模型官方代码&#xff1a;https://github.com/openai/whisper/blob/main/whisper/model.py &#xff1b;注释如下 import base64 import gzip from dataclasses import dataclass from typing import Dict, Iterable, Optionalimport numpy as np impo…

java设计模式和面向对象编程思想

Java设计模式和面向对象编程思想是软件开发中的核心概念&#xff0c;对于构建可维护、可扩展的软件系统至关重要。下面是对这两个主题的知识点总结&#xff1a; 面向对象编程&#xff08;OOP&#xff09;思想 封装&#xff1a;将数据&#xff08;属性&#xff09;和操作这些数据…

享元和代理模式

文章目录 享元模式1.引出享元模式1.展示网站项目需求2.传统方案解决3.问题分析 2.享元模式1.基本介绍2.原理类图3.外部状态和内部状态4.类图5.代码实现1.AbsWebSite.java 抽象的网站2.ConcreteWebSite.java 具体的网站&#xff0c;type属性是内部状态3.WebSiteFactory.java 网站…

CSS从入门到精通——动画:CSS3动画执行次数和逆向播放

目录 任务描述 相关知识 动画执行次数 动画反向播放 编程要求 任务描述 本关任务&#xff1a;用 CSS3 实现loading效果。效果图如下&#xff1a; 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a;1.动画执行次数&#xff0c;2.动画反向播放。 需要实现的效…

R调用Taxonkit展示系统发育信息

Introduction TaxonKit是一个用于处理生物分类学数据的命令行工具。 它的主要功能是处理NCBI的生物分类学数据&#xff0c;包括对分类单元&#xff08;如物种、属、科等&#xff09;的查找、分类单元的上下位关系查询、分类单元名称的标准化等。 为了方便R社区用户&#xff0…

【计算机组成原理】指令系统考研真题详解之拓展操作码!

计算机组成原理&#xff1a;指令系统概述与深入解析 1. 指令系统概述 计算机软硬件界面的概念 在计算机组成原理中&#xff0c;指令系统扮演着至关重要的角色&#xff0c;它是计算机软硬件界面的核心。软件通过指令与硬件进行通信&#xff0c;硬件根据指令执行相应的操作。指…

如何解决javadoc一直找不到路径的问题?

目录 一、什么是javadoc二、javadoc为什么会找不到路径三、如何解决javadoc一直找不到路径的问题 一、什么是javadoc Javadoc是一种用于生成Java源代码文档的工具&#xff0c;它可以帮助开发者生成易于阅读和理解的文档。Javadoc通过解析Java源代码中的注释&#xff0c;提取其…

【Python】理解『下采样』:原理与应用

是你多么温馨的目光 教我坚毅望着前路 叮嘱我跌倒不应放弃 没法解释怎可报尽亲恩 爱意宽大是无限 请准我说声真的爱你 &#x1f3b5; Beyond《真的爱你》 在数字信号处理、图像处理和机器学习中&#xff0c;下采样&#xff08;Downsampling&#xff09;是…

42 mysql “+“ 操作符的实现

前言 问题来自于 chinaunix, mysql select 子句的小白问题 mysql 的一些基础的 算术运算符 的计算的实现 这里 整理如下 case, 执行之前 设置如下变量 set a 2; set b 3;select a b; select a b; select 1 3; select 1 3; select a b; select a b; select a b; …

【Quartus 13.0】NIOS II 部署UART 和 PWM

打算在 EP1C3T144I7 芯片上部署 nios ii 做 uart & pwm控制 这个芯片或许不够做 QT 部署 这个芯片好老啊&#xff0c;但是做控制足够了&#xff0c;我只是想装13写 leader给的接口代码是用VHDL写的&#xff0c;我不会 当然verilog我也不太会 就这样&#xff0c;随便写吧 co…

element-plus表单组件之自动补全组件el-autocomplete和级联选择器组件el-cascader

el-autocomplete 自动补全组件 自补全组件的功能和可以根据输入过滤的el-select组件有些类似。 fetch-suggestions 根据输入框的输入获取建议的内容&#xff0c;其接受值是一个函数&#xff0c;有2个参数&#xff0c;querystring:输入的内容&#xff0c;callback内置函数&…

数据结构C语言版:顺序表基本操作的实现

参考教材&#xff1a;数据结构C语言版&#xff08;严蔚敏&#xff0c;吴伟民编著&#xff09; 目录 线性表的基本操作&#xff1a; 1&#xff1a;线性表L的初始化(参数用引用) 2&#xff1a;销毁线性表L 3&#xff1a;清空线性表L 4&#xff1a;求线性表L的长度 5&#xf…