为什么大模型训练需要GPU,以及适合训练大模型的GPU介绍

文章目录

前言

1、为什么大模型训练需要GPU,而非CPU

2、现在都有哪些合适的GPU适合训练,价格如何


前言

今天偶然看到一篇关于介绍GPU的推文,我们在复现代码以及模型训练过程中,GPU的使用是必不可少的,那么大模型训练需要的是GPU,而不是CPU呢。现在市面上又有哪些适合训练的GPU型号呢,价格如何,本文将会将上述疑问的回答一一分享给大家。


1、为什么大模型训练需要GPU,而非CPU

总的来说,选择GPU而非CPU进行大模型训练的主要原因是因为GPU在并行处理能力、高吞吐量和针对机器学习任务的优化方面的优势。这使得GPU成为训练复杂和大规模机器学习模型的首选。

并行处理能力:GPU拥有成千上万个较小、更专用的核心,这使得它们能够同时处理多个任务。这种并行处理能力使GPU非常适合执行机器学习和深度学习算法中的大量矩阵和向量运算。相比之下,CPU(中央处理单元)核心数量较少,但每个核心的通用计算能力更强,适用于需要大量逻辑和顺序处理的任务。

高吞吐量:GPU能够提供更高的吞吐量,这意味着它们可以在较短的时间内处理更多的数据。这对于训练大型模型尤其重要,因为这些模型通常需要处理巨大的数据集,并执行数以亿计的运算。

大规模计算:GPU最初是为了处理复杂的图形和图像处理任务而设计的,这些任务需要大量的计算和数据处理。这些设计特性也让GPU非常适合于训练大型机器学习模型,因为这些模型需要进行大量的数学运算,特别是在训练神经网络时。

优化的库和框架:许多深度学习框架和库,如TensorFlow、PyTorch等,都针对GPU进行了优化,以充分利用其并行处理能力。这些优化包括专门的算法和硬件加速技术,可以显著加快模型训练过程。

成本:虽然高端GPU的初始投资可能比CPU高,但在处理大规模机器学习任务时,GPU因其较高的效率和速度,可以提供更好的成本效益。尤其是在云计算环境中,用户可以根据需要临时租用GPU资源,进一步提高成本效益。

2、现在都有哪些合适的GPU适合训练,价格如何

现在GPU可谓是各大厂商都在疯抢,并不是你有钱就可以买的到的,并且现在大规模训练主要还是英伟达(NVIDIA)系列为主,受中美关系影响,更难搞到好的GP。下面介绍几款常用的GPU:

A100:非常适合大规模并行计算任务和大模型训练,现在用的最多的卡之一,性价比高,1.5w美元左右,但是溢价严重,人民币价格区间10w~20w,运气好的话10w左右可以拿下。(价格仅供参考,购买时因素很多,只能提供通用的价格区间,后面GPU价格时也是一样,只提供价格区间)。

H100:A100的下一代产品,提供了更高的性能和更快的NVLink通信速度,特别针对人工智能、机器学习和深度学习进行了优化。价格是A100的2倍左右,售价是2.5w~3w美元之间,但是溢价严重,3.5w美元都不一定能拿下来,所以参考价格区间,25w~35w人民币。

A100和H100,因为政治因素。去年受到了限制,为此NVIDIA推出了替代型号专供中国市场,A100的替代型号是A800,在已有A100的基础上将NVLink高速互连总线的带宽从600GB/s降低到400GB/s,其他完全不变。H100的替代型号是H800,应该是跟A800一样降低了带宽。

A800:具体价格不明,但应该和A100差不多,预计10w~20w之间。

H800:具体价格不明,但是应该25w起,估计在35w~45w之间。

V100:性能肯定不如上面提到的那四个(A100、H100、A800、H800),但是如果资金有限,V100也是一个不错的选择,32G版价格一般5w~8w。

整体对比如下图所示,性能上H100(或H800)> A100(或A800)> V100。

4090:最后再来说一下4090显卡,4090显卡训练大模型不行,因为大模型训练需要高性能的通信,但4090的通信效率太低,但是进行推理可以。价格一般在2w左右。

参考:极客e家

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/2790.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【电控笔记5.8】数字滤波器设计流程频域特性

数字滤波器设计流程&频域特性 2HZ : w=2pi2=12.56 wc=2*pi*5; Ts=0.001; tf_lpf =

stm32F407-PS手柄代码,20240424

一、硬件接线 手柄接收器—stm32板子 GND—GND VCC—5V DAT–F3 CMD–F5 CS–F6 CLK–F4 二、PStwo.h #ifndef __PSTWO_H #define __PSTWO_H//F3 F5 F6 F4 F10 // #include "delay.h" #include "sys.h"#define DI PFin(3) //PB12 输入#defin…

C++从入门到出门

C 概述 c 融合了3中不同的编程方式: C语言代表的过程性语言C 在C语言基础上添加的类代表的面向对象语言C 模板支持的泛型编程 1、在c语言中头文件使用扩展名.h,将其作为一种通过名称标识文件类型的简单方式。但是c得用法改变了,c头文件没有扩展名。但是…

YOLO新鲜腐烂水果检测数据集:8类,11000多张图像,标注完整

YOLO新鲜腐烂水果检测数据集:8类,11000多张图像,yolo标注完整,包含烂苹果,烂香蕉,烂橙子,烂石榴,好苹果,好香蕉,好橙子,好石榴8个类别 图像统一大…

什么是行子查询(Row Subqueries)?

什么是行子查询(Row Subqueries)? 行子查询,也称为行构造子查询,是SQL中的一种子查询形式,它返回单个行而不仅仅是单个字段的值。这意味着,与标准的标量或列子查询不同,行子查询可以…

Mybatis框架怎么查看执行的sql语句

文章目录 一、打开idea搜索mybatis SimpleExecutor类二、找到类中doQuery方法,并打断点二、发请求后,查看boundSql 一、打开idea搜索mybatis SimpleExecutor类 org.apache.ibatis.executor.SimpleExecutor二、找到类中doQuery方法,并打断点 …

Lombok的使用

1、什么是lombok lombok是一种实用的工具,可以用来帮助开发人员消除Java中的冗余代码,尤其是对于简单的Java对象(POJO),它通过注解达到这一目的。 2、Lombok常用注解 2.1 Getter/Setter 从名字上理解,相…

JVM(java虚拟机 详解三个主要的话题:1.JVM 中的内存区域划分2.JVM 的类加载机制3.JVM 中的垃圾回收算法)

jdk java开发工具包 jre java运行时环境 jvm java虚拟机 JDK、JRE、JVM之间的关系? JDK(Java Development Kit):Java开发工具包,提供给Java程序员使用,包含了JRE,同时还包含了编译器javac与自带的调试工具Jconsole、jstack等。…

在AI工业变革的拐点,迎来AI智算“安卓时刻”

今天,我们正在进入AI的工业变革拐点期。所谓AI的工业变革,主要指以大模型AI所引发的通用AI和以通用AI为目标构建的工业标准化AI智算基础设施。 在通用计算时代,X86所代表的工业标准化技术体系造就了企业IT、互联网与云数据中心。而在智算时代…

计网笔记:第1章 计算机网络概论

计网笔记:第1章 计算机网络概论 第1章 计算机网络概论1.1 计算机网络发展与分类1.2 OSI和TCP/IP参考模型OSI与TCP/IP参考模型图 1.3 数据封装与解封过程借助OSI模型理解数据传输过程(封装)借助OSI模型理解数据传输过程(解封) 1.4 本章例题 第1章 计算机网络概论 1.…

mac系统镜像源管理之nrm的安装与使用

之前有介绍过:pnpm安装和使用,nvm安装及使用,在前端开发中其实还有一个工具也会偶尔用到,那就是nrm,本文就详解介绍一下这个工具,非常的简单且好用~ 文章目录 1、什么是nrm?2、安装3…

Docker原理与基础命令

目录 一、云与虚拟化知识 (一)云基本知识 1.云基本介绍 2.常用的云服务器 3.云服务模型 3.1 IaaS 3.2 PaaS 3.3 SaaS (二)虚拟化介绍 1.什么是虚拟化 2. 虚拟化技术概述 3.虚拟化技术类型 4.虚拟化架构 ①寄居架构…

PostgreSQL中的索引类型有哪些,以及何时应选择不同类型的索引?

文章目录 索引 解决方案和示例代码 PostgreSQL提供了多种索引类型,每种类型都有其特定的应用场景和优势。选择合适的索引类型可以显著提高查询性能,减少数据库负载。 索引 以下是PostgreSQL中常见的索引类型及其适用场景: 1. B-tree 索引 …

对增加LLaMA 3 上下文长度技术的猜测

AI苏妲己: 在许多应用场景中,如长对话、长文档摘要或长期计划执行等,大语言模型能够支持较长的上下文窗口是非常理想的。以一次处理约50页书籍内容为例,通常需要模型支持32K个token的上下文长度。目前,主流的大语言模…

【题目2】 大衍数列,斐波拉契数列等,用VBA 和python解决

目录 0 原始题目:大衍数列 0.1 原始题目 0.2 知识点 1 大衍数列 1.1 大衍数列定义 1.1.1 大衍数列定义 1.1.2 大衍数列注意点 1.2 用VBA实现大衍数列 1.3 用python实现大衍数列 2 斐波拉契数列 /兔子数列/ 黄金分割数列 2.1 斐波拉契数列定义 2.1.1 下面…

【Linux】Kill Process 后依然占用显卡空间并显示 No Such Process

问题 : 如图所示,在显卡上使用 Crtl C 结束某个进程后,使用 nvitop 工具或者 nvidia-smi 命令,显示 No Such Process,但是确占用着显卡空间。搜索这个 PID 时,也显示找不到。 解决:实际上是因为…

BUUCTF——[网鼎杯 2018]Fakebook

BUUCTF——[网鼎杯 2018]Fakebook 1.测试SQl注入的注入点1 2.尝试使用-- -进行闭合,但是不行 3.尝试使用数字型的SQL注入,使用--进行注入后面的SQL语句 4.尝试使用and 11 判断其是否真的存在SQL注入 5.尝试使用and 12进行判断 6.发现这个地方确实存…

机器学习 | 使用Python开发多输出回归模型

多输出回归是监督机器学习的一种特殊形式,可以同时预测多个目标变量。虽然传统回归侧重于基于一组输入特征预测单个数值(目标变量),但多输出回归扩展了这一概念,可以同时预测多个数值,这在各种现实世界的应…

【产研测类】线上问题处理机制

1 概述 本规范致力于优化运营与产研团队在线问题管理的效率与效果,全面覆盖生产问题的识别、处理机制、分类分级、责任归属和明确奖惩机制。同时,侧重资源重点解决主流程关联的核心模块生产问题。如此,确保各个环节责任到人,内…

单细胞分析|整合 scRNA-seq 和 scATAC-seq 数据

引言 单细胞转录组学极大地提升了对细胞状态进行分类的能力,但要深入理解生物学现象,不能仅仅停留在对细胞群的简单列举上。随着新方法的不断涌现,用于测量细胞的不同状态,一个关键的挑战是如何将这些数据集整合起来,以…