入职3年-我如何做一名AI产品经理(文末福利)

引言

从2021年校招加入京东开始,我一直从事AI产品经理的工作,有幸见证了AI行业的热情从一台台服务器烧到了全世界各个角落,也见证了京东AI中台团队的影响力如何一步步的扩大。从21年的迷茫到24年的坚定,很庆幸我正走在适合自己的道路上,也有幸在此分享一些我的成长故事和观点。

一、入局:AI风口下的职业判断

从事AI产品方向是巧合也是个人的一次判断。我在学生期间主修方向是机械工程和风险管理,之前是没有AI相关经历的,但当时我判断未来AI会在更多的行业有应用落地,所以在毕业论文的选题上,选择了AI+风险管理的方向,恰好在实习时朋友推荐了京东AI产品的岗位从而加入了京东。

AI产品经理核心的产品方向包括AI开发平台、AI应用平台、算力调度平台等。相比一般产品经理,AI产品经理需要具备更多的技术视角,包括掌握AI算法的原理、AI底层系统的架构设计等;同时,AI产品经理需要有更多前沿信息获取的渠道,包括通过媒体平台、大型发布会、竞品调研、顶会文章、论文等。总之,我眼中的AI产品经理需要从最前沿的技术架构视角进行产品设计,并且要在产品层让用户对复杂技术无感知,降低用户的学习成本和使用门槛。

在2021年,AI产品是产品经理中非常小众的方向,成长进步有非常大的阻碍:产品同行无人知晓、一般公司研发投入有限、先鉴经验较少、技术积累不足导致研发驱动为主。我和很多新人同行一样,对未来的发展充满迷茫,不知道自己的价值点在哪。对于未来技术趋势的判断促使自己一直在坚持,在一次次的项目中积累了项目推动的经验,在每个项目中深挖到技术原理以及代码实现层;同时,也保持了学习的习惯,一直在沉淀AI产品的方法论。

2023年是AGI发展的元年,ChatGPT横空出世、中国百模大战、英伟达市值暴涨、美国芯片禁令,AI相关的动态几乎每天都会被人提起。在这个时代下,AI产品经理的价值终于慢慢得到体现,我所负责的项目的愿景也逐渐提升,之前多年的技术积累也让我能快速地掌握AIGC全新的产品架构。2024年,越来越多应用落地让所有人都清楚地看到AI的潜力是巨大的。

在京东工作期间,我主要负责过算力调度系统、存储系统等基础设施层的设计,以及算法开发平台、大模型推理系统、端智能等平台层的产品设计,近期在探索AIGC应用在零售领域的落地。涉及的产品系统核心目的是支持京东零售业务的智能化应用快速落地。

二、 磨砺:从项目中构建专业能力

三年以来有两个项目让我印象深刻,使我清晰地意识到自己跨越到了新的职场阶段。

1)数据平台&算法平台融合项目-从新人完成转身

这个项目开始在我入职1年左右,项目背景是我长期负责的算法开发平台与跨团队的大数据开发平台进行融合。当时团队遇到的最大挑战是双方的产研对彼此的用户、技术栈、产品体系都几乎没有太多认知,而AI系统与大数据系统的底层架构非常复杂,短期内很难做到快速对齐认知。在这个背景下,我意识到我必须承担起从技术、产品、架构、用户等各个维度拉通方案及信息的角色。

首先需要从用户视角了解产品,我花了大概1个月的时间端到端地使用合作团队的产品,并保持与用户的沟通,预判融合后可能对用户造成的影响,深刻了解他们的用户与使用习惯。同时,我从底层技术出发,学习复杂的大数据架构体系。与AI产品类似,对大数据底层架构的理解往往比产品的设计更加复杂,我几乎每天都会通过CSDN、B站、知乎、书本等渠道吸取新知识,并且将学习的内容进行沉淀,在两个团队之间进行分享,每天会奔走在合作团队研发的工位附近。在最后的落地环节,需要开始考虑到如何融合双方产品,包括融合后的产品定位、融合的时间节奏、团队间的分工协作,考虑到融合后对用户可能造成的影响,我们将整体的工作划分为三期:第一期主要从SDK层面融合,用户几乎无感知;第二期从产品上进行融合,提供用户迁移工具,保留原有产品入口,用户可以有节奏地进行迁移;第三期协助核心重点业务完成迁移,原有产品下线。

通过这个项目,在团队协作上,我学习到了高效的团队协作模式,如:前期确认预期,中期对齐方向,后期保障收益等;在产品能力上,我了解到了如何降低对用户的影响是产品迭代的关键因素。这是我第一次独立地完成产品整体维度的设计,并且与众多高职级的架构师、研发对接方案,我对于自己的定义也不再是一个新人。

2)端智能项目-做一名项目主Owner

端智能项目在我入职1年半左右启动,这是我首次作为主Owner之一推动中台战略级项目,项目的背景是建设端云协同的AI系统,将京东的部分AI算法模型迁移至手机端侧。作为从0到1的项目,过程中遇到了用户的端侧模型开发调试效率低、公司缺乏端模型上线规范和标准、跨团队协作节奏对齐难等挑战。

作为主牵头人,在项目中我给自己的定位是不设边界,任何方案的决策我都参与其中。产品上为我们的用户提供了一站式开发调试平台,提升了用户的模型交付效率。在上线规范上,梳理制定了不同场景下最优的上线方案,快速支持算法业务方进行业务迭代;同时制定了上线标准,最大程度保证模型计算的质量。另外,在团队协作上,积极拉通各个团队对齐信息,在各个项目交付的关键节点集中确认交付质量,保证项目的收益达成预期。作为创新型项目,我在项目过程中还一直保持行业洞察,从行业中其他友商所做的算法业务的角度,调研在京东落地的可行性,如流量分发场景下的端侧重排方案。

项目开始至今1年半的时间,京东的端智能体系已经在公司、行业内产生了一定的影响力,我个人也从一名产品设计者的角色转换为项目主Owner之一。主Owner与执行者的区别在于主Owner需要在产品设计及项目推进的各个关键阶段进行决策,决策的背后是对于项目ROI以及合理性的多重思考。从0到1建设新产品最大的挑战往往并不是产品设计能力,而是面对未知进行决策的勇气。

三、 深潜:“三段式”AI产品经理成长路径

对于初级AI产品经理,除了产品经理的基本素质外,要求是具备一定的AI专业知识与开发能力。作为底层的开发平台的产品,我们面向的用户一般是研发人员,其中算法工程师居多,需要产品经理从用户实际的开发视角出发。以我自己的经历来说,作为非技术背景出身的产品,我可以在研发不介入的情况上完成一些模型的开发工作,动手实操过数十个github热门项目。

对于进阶的AI产品经理,需要从系统架构的视角去进行产品设计。AI产品的系统往往涉及到各种上下游系统和中间件,如Hadoop、Spark、Presto等大数据组件,以及镜像、存储等基础设施,没有整体的架构视角,产品设计会受到非常多的限制。所以优秀的AI产品经理往往都是一名架构师。

对于资深的AI产品经理,需要具备更多行业及业务的视角。AI行业的变革是非常迅速的,产品的迭代往往会滞后于技术的创新,如果不能从行业角度出发,那可能产品在研发过程中就已经滞后于行业了。此外,同样是由于技术变革的多样性,如何精准定位到业务真正的需求是非常关键的,不能只局限在技术上的突破,还得考虑到产品对公司业务的价值究竟在哪,以合理地评估ROI。

四、 践行:AI产品经理的能力“四象限”

在上面的成长路径里也有提到不同层次的AI产品经理需要具备的能力,这里想去分享的是如何成为一名优秀的AI产品经理。

产品设计:提炼极简化设计思路

AI产品系统底层往往涉及到非常复杂的技术,我们的用户是算法工程师,他们需要更多专注在算法优化的本身,而不希望去学习系统层面的技术。作为产品经理,需要在产品功能上做到开箱即用,用户在平台的大部分工作都可以通过配置化、界面化完成,且在用户的交互界面要尽可能避免使用生涩的词汇,要与行业设计保持高度一致,极简的设计才能带来最大化的业务提效。例如,我在设计模型优化功能时,底层我们用到了非常多的模型优化技术,如Flash Attention、Page Attention等,在产品层我并未将优化的技术暴露给用户,而是将技术组合打包成不同的解决方案,用户只需要根据业务需求以及优化效果选择方案即可,无需关注底层技术。

技术理解:保持学习习惯

关于提升技术理解,保持良好的学习习惯是基本要求。一方面需要有全面的信息获取渠道及学习方向,我的信息获取渠道包括:AI媒体网站、专业自媒体、论文文献、书籍等;学习的方向包括:AI基础算法知识、芯片半导体的发展、模型训练推理平台及引擎、大模型底层技术原理、AIGC应用产品落地等,我每天会至少抽出1个小时获取行业最新信息与技术。另一方面需要及时进行沉淀,在有良好的信息输入的前提下,需要定期整理和沉淀自己的知识库,通过写一些专业的文章可以更好地整合自己的知识体系。

行业视野:向外看与行业接轨

视野决定了个人工作以及产品的高度,每个产品经理都应该不断地拓宽视野。对于AI产品经理,拓宽视野的方式是更多参与行业的发布会&论坛,每次发布会往往是各家公司展示最前沿技术的舞台。在行业活动中,应该多对标行业一线厂商,将行业的思路带回到自己的设计中。

影响推动:塑造个人影响力

当我们拥有足够的专业能力、技术理解以及行业视角时,我们需要在更多场合具备足够大的影响力。作为公司内外部交流座谈会的分享者、成立个人自媒体账号、制作专业课程等方式是我们打造个人影响力的主要途径,个人影响力将对在公司推动项目带来重要的正向价值。

五、结语:对于未来的期盼

回顾过去3年,从2021年的荆棘满布到2024年逐渐的开花结果,每一次项目的开始与完结都有成长伴随着我。有幸加入京东、加入这个团队、加入AI领域,个人的成长永远离不开一个好的平台&团队。

对于未来,从资本市场看:越来越多的资金流向AI行业,流向AI创业公司,AI行业在未来3-5年一定会继续被市场重点关注;从AI行业看:在技术能力及基础设施逐步完备的情况下,AI应用未来一定是行业重点的发力方向,懂业务&技术的AI产品经理会是行业内非常重要的角色之一。作为AI产品经理,我也期望未来可以在京东做出更多可以高效赋能业务的AI产品,在行业内打造京东技术产品的影响力。

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/27309.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】类的默认成员函数

类的默认成员函数 类的六个默认成员函数构造函数构造函数的概念构造函数的特性 析构函数析构函数的概念析构函数的特性 构造函数与析构函数的调用顺序拷贝构造拷贝构造的概念拷贝构造的特性赋值运算符重载运算符重载赋值运算符重载前置与后置重载输入输出流重载 const修饰成员实…

高精度减法

高精度减法 两个高精度整数的减法题目思路实现代码实现 两个任意符号的高精度加减法 两个高精度整数的减法 高精度指的是数字的大小非常非常大,最多能有10的5次方 的 位数。 本次计算的两个数均为 正数,如何求负数会在最后提到。 题目 给定两个正整数…

解决浏览器缩放的时候,重新设置滚动条的位置,使页面滚动条固定悬浮在页面底部

项目场景: 浏览器调试页面兼容页面时,缩放页面宽度,整体超出时滚动条出现在页面最底部,不是悬浮在页面下面,只有滚动到最底部才出现,需要的是悬浮在页面底部,不是滚动到最下面才出现 解决方案…

java面试整合全套

什么是Java (定义 优点) java是一个平台,由jvm和Java应用编程接口构成的一门面向编程语言。 不仅吸收了C语言的各种优点,还摒弃了c语言里面的多继承,指针等概念,因此java的特征主要有功能强大和简单易用的特征。 jav…

FPGA Verilog模块化设计入门篇一

随着电子技术的快速发展,现场可编程门阵列(FPGA)已成为现代电子系统设计中不可或缺的一部分。FPGA的灵活性、可重构性和高性能使得它成为处理复杂算法、加速数据处理和实现特定功能的理想选择。然而,随着系统复杂性的增加&#xf…

go-zero整合Excelize并实现Excel导入导出

go-zero整合Excelize并实现Excel导入导出 本教程基于go-zero微服务入门教程,项目工程结构同上一个教程。 本教程主要实现go-zero框架整合Excelize,并暴露接口实现Excel模板下载、Excel导入、Excel导出。 go-zero微服务入门教程:https://blo…

Mysql学习(九)——存储引擎

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 七、存储引擎7.1 MySQL体系结构7.2 存储引擎简介7.3 存储引擎特点7.4 存储引擎选择7.5 总结 七、存储引擎 7.1 MySQL体系结构 连接层:最上层是一些客户…

自然语言处理领域的重大挑战:解码器 Transformer 的局限性

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

聚焦赛宁网安竞赛平台+赛事服务,引领网络安全竞赛新潮流

第八届XCTF总决赛将在2024年6月22日于中国成都震撼开启,本届总决赛分为个人Live Solo和团队KOH巅峰对决两个赛道,从个人和团队多角度全方位考察参赛人员的竞技水平。 巅峰对决 智慧的火花在此碰撞 个人Live Solo赛制 Live Solo赛分为晋级赛和Solo赛。…

贝壳APP渗透测试WP

前期配置 环境说明 使用PIXEL 4手机,为Android 12系统 APP名为贝壳找房,包名com.lianjia.beike,版本号3.01.10,截至2024/05/07为最新版,小米应用市场下载 绕过反Frida机制 可以参考往期推送,《绕过最新…

2分钟用手机开发一个ChatBot

前言: 在上一期,我们测评了CodeFlying,用它开发出了一个复杂推文管理系统,然后体验了一下它的热门应用:AI智能机器人。今天咱就继续用CodeFlying来开发一个属于我们自己的聊天机器人。 老规矩,我们先在手机…

【qt】平面CAD(计算机辅助设计 )项目 上

CAD 一.前言二.界面设计三.提升类四.接受槽函数五.实现图形action1.矩形2.椭圆3.圆形4.三角形5.梯形6.直线7.文本 六.总结 一.前言 用我们上节课刚刚学过的GraphicsView架构来绘制一个可以交互的CAD项目! 效果图: 二.界面设计 添加2个工具栏 需要蔬菜的dd我! 添加action: …

遗传算法求解车间调度问题(附python代码)

背景介绍 车间调度问题(Job Shop Scheduling Problem, JSSP)是一类经典的组合优化问题,它在制造业和生产管理中有着广泛的应用。JSSP 的目标是对车间中的一系列作业进行排程,以使得作业在不同机器上的加工顺序是最优的&#xff0…

万相台的功能是什么?如何使用万相台?

1.特点: 万相台是一个智能渠道,可控性弱,高转化,人群&关键词是黑盒; 2.场景多: 有拉新快、活动加速、上新快、货品加速、活动加速、多目标直投、全站推等; 3.扣费逻辑:cpc付…

Sm4【国密4加密解密】

当我们开发金融、国企、政府信息系统时,不仅要符合网络安全的等保二级、等保三级,还要求符合国密的安全要求,等保测评已经实行很久了,而国密测评近两年才刚开始。那什么是密码/国密?什么是密评?本文就关于密…

Linux:线程概念 线程控制

Linux:线程概念 & 线程控制 线程概念轻量级进程 LWP页表 线程控制POSIX 线程库 - ptherad线程创建pthread_createpthread_self 线程退出pthread_exitpthread_cancelpthread_joinpthread_detach 线程架构线程与地址空间线程与pthread动态库 线程的优缺点 线程概念…

机器学习与数据挖掘知识点总结(二)分类算法

目录 1、什么是数据挖掘 2、为什么要有数据挖掘 3、数据挖掘用在分类任务中的算法 朴素贝叶斯算法 svm支持向量机算法 PCA主成分分析算法 k-means算法 决策树 1、什么是数据挖掘 数据挖掘是从大量数据中发现隐藏在其中的模式、关系和规律的过程。它利用统计学、机器学…

14.shell awk数组

awk数组 awk数组awk数组示例Nginx日志分析 awk数组 1.什么是awk数组 数组其实也算是变量,传统的变量只能存储一个值,但数组可以存储多个值 2.awk数组应用场景 通常用来统计、比如:统计网站访问TOP10、网站url访问TOP10等等 3.awk数组统计技巧 1.在awk中,使用数组时,不仅可以…

Interview preparation--RabbitMQ

AMQP AMQP(Advanced Message Queueing protocol). 高级消息队列协议,是进程之间床底一步新消息的网络协议AMQP工作原理如下: 发布者(Publisher)发布消息(Message)经过交换机(Exchange&#xff…

新视窗新一代物业管理系统 GetCertificateInfoByStudentId SQL注入漏洞复现

0x01 产品简介 新视窗物业管理系统属于专家型的物业管理软件,能够给物业公司内部管理提供全面的解决方案,具有房产管理、客户管理、租赁管理、仪表管理、财务收费、发票管理、合同管理、仓储管理、设施设备管理、客户服务管理、会员管理、人事管理、资产管理、日常办公、档案…