[大模型]GLM4-9B-chat Lora 微调

本节我们简要介绍如何基于 transformers、peft 等框架,对 LLaMA3-8B-Instruct 模型进行 Lora 微调。Lora 是一种高效微调方法,深入了解其原理可参见博客:知乎|深入浅出 Lora。

这个教程会在同目录下给大家提供一个 nodebook 文件,来让大家更好的学习。

环境准备

在 Autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->2.1.0-->3.10(ubuntu22.04)-->12.1
接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。

在这里插入图片描述

环境配置

在完成基本环境配置和本地模型部署的情况下,你还需要安装一些第三方库,可以使用以下命令:

python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip install modelscope==1.9.5
pip install "transformers>=4.40.0"
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.29.3
pip install datasets==2.19.0
pip install peft==0.10.0
pip install tiktoken==0.7.0MAX_JOBS=8 pip install flash-attn --no-build-isolation

注意:flash-attn 安装会比较慢,大概需要十几分钟。

考虑到部分同学配置环境可能会遇到一些问题,我们在 AutoDL 平台准备了 GLM-4 的环境镜像,该镜像适用于本教程需要 GLM-4 的部署环境。点击下方链接并直接创建 AutoDL 示例即可。(vLLM 对 torch 版本要求较高,且越高的版本对模型的支持更全,效果更好,所以新建一个全新的镜像。) https://www.codewithgpu.com/i/datawhalechina/self-llm/GLM-4

在本节教程里,我们将微调数据集放置在根目录 /dataset。

模型下载

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。

在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/model_download.py 执行下载。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import osmodel_dir = snapshot_download('ZhipuAI/glm-4-9b-chat', cache_dir='/root/autodl-tmp/glm-4-9b-chat', revision='master')

指令集构建

LLM 的微调一般指指令微调过程。所谓指令微调,是说我们使用的微调数据形如:

{"instruction": "回答以下用户问题,仅输出答案。","input": "1+1等于几?","output": "2"
}

其中,instruction 是用户指令,告知模型其需要完成的任务;input 是用户输入,是完成用户指令所必须的输入内容;output 是模型应该给出的输出。

即我们的核心训练目标是让模型具有理解并遵循用户指令的能力。因此,在指令集构建时,我们应针对我们的目标任务,针对性构建任务指令集。例如,在本节我们使用由笔者合作开源的 Chat-甄嬛 项目作为示例,我们的目标是构建一个能够模拟甄嬛对话风格的个性化 LLM,因此我们构造的指令形如:

{"instruction": "你是谁?","input": "","output": "家父是大理寺少卿甄远道。"
}

我们所构造的全部指令数据集在根目录下。

数据格式化

Lora 训练的数据是需要经过格式化、编码之后再输入给模型进行训练的,如果是熟悉 Pytorch 模型训练流程的同学会知道,我们一般需要将输入文本编码为 input_ids,将输出文本编码为 labels,编码之后的结果都是多维的向量。我们首先定义一个预处理函数,这个函数用于对每一个样本,编码其输入、输出文本并返回一个编码后的字典:

def process_func(example):MAX_LENGTH = 384input_ids, attention_mask, labels = [], [], []instruction = tokenizer((f"[gMASK]<sop><|system|>\n假设你是皇帝身边的女人--甄嬛。<|user|>\n"f"{example['instruction']+example['input']}<|assistant|>\n"), add_special_tokens=False)response = tokenizer(f"{example['output']}", add_special_tokens=False)input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]  # 因为eos token咱们也是要关注的所以 补充为1labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]  if len(input_ids) > MAX_LENGTH:  # 做一个截断input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}

GLM4-9B-chat 采用的Prompt Template格式如下:

[gMASK]<sop><|system|> 
假设你是皇帝身边的女人--甄嬛。<|user|> 
小姐,别的秀女都在求中选,唯有咱们小姐想被撂牌子,菩萨一定记得真真儿的——<|assistant|> 
嘘——都说许愿说破是不灵的。<|endoftext|>

加载 tokenizer 和半精度模型

模型以半精度形式加载,如果你的显卡比较新的话,可以用torch.bfolat形式加载。对于自定义的模型一定要指定trust_remote_code参数为True

tokenizer = AutoTokenizer.from_pretrained('/root/autodl-tmp/glm-4-9b-chat/ZhipuAI/glm-4-9b-chat', use_fast=False, trust_remote_code=True)model = AutoModelForCausalLM.from_pretrained('/root/autodl-tmp/glm-4-9b-chat/ZhipuAI/glm-4-9b-chat', device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True)

定义 LoraConfig

LoraConfig这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。

  • task_type:模型类型
  • target_modules:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。
  • rlora的秩,具体可以看Lora原理
  • lora_alphaLora alaph,具体作用参见 Lora 原理

Lora的缩放是啥嘞?当然不是r(秩),这个缩放就是lora_alpha/r, 在这个LoraConfig中缩放就是 4 倍。

config = LoraConfig(task_type=TaskType.CAUSAL_LM, target_modules=["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"],  # 现存问题只微调部分演示即可inference_mode=False, # 训练模式r=8, # Lora 秩lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理lora_dropout=0.1# Dropout 比例
)

自定义 TrainingArguments 参数

TrainingArguments这个类的源码也介绍了每个参数的具体作用,当然大家可以来自行探索,这里就简单说几个常用的。

  • output_dir:模型的输出路径
  • per_device_train_batch_size:顾名思义 batch_size
  • gradient_accumulation_steps: 梯度累加,如果你的显存比较小,那可以把 batch_size 设置小一点,梯度累加增大一些。
  • logging_steps:多少步,输出一次log
  • num_train_epochs:顾名思义 epoch
  • gradient_checkpointing:梯度检查,这个一旦开启,模型就必须执行model.enable_input_require_grads(),这个原理大家可以自行探索,这里就不细说了。
args = TrainingArguments(output_dir="./output/GLM4",per_device_train_batch_size=1,gradient_accumulation_steps=8,logging_steps=50,num_train_epochs=2,save_steps=100,learning_rate=1e-5,save_on_each_node=True,gradient_checkpointing=True
)

使用 Trainer 训练

trainer = Trainer(model=model,args=args,train_dataset=tokenized_id,data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train()

保存 lora 权重

lora_path='./GLM4'
trainer.model.save_pretrained(lora_path)
tokenizer.save_pretrained(lora_path)

加载 lora 权重推理

训练好了之后可以使用如下方式加载lora权重进行推理:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from peft import PeftModelmode_path = '/root/autodl-tmp/glm-4-9b-chat/ZhipuAI/glm-4-9b-chat'
lora_path = './GLM4_lora'# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(mode_path, trust_remote_code=True)# 加载模型
model = AutoModelForCausalLM.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval()# 加载lora权重
model = PeftModel.from_pretrained(model, model_id=lora_path)prompt = "你是谁?"
inputs = tokenizer.apply_chat_template([{"role": "user", "content": "假设你是皇帝身边的女人--甄嬛。"},{"role": "user", "content": prompt}],add_generation_prompt=True,tokenize=True,return_tensors="pt",return_dict=True).to('cuda')gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():outputs = model.generate(**inputs, **gen_kwargs)outputs = outputs[:, inputs['input_ids'].shape[1]:]print(tokenizer.decode(outputs[0], skip_special_tokens=True))

完整脚本参考:
https://github.com/datawhalechina/self-llm/blob/master/GLM-4/05-GLM-4-9B-chat%20Lora%20%E5%BE%AE%E8%B0%83.ipynb

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/26102.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IP协议报文格式

IP协议报文格式 一: 报头格式1.1 : 4位版本1.2 : 4位首部长度1.3 : 8位服务类型 :1.4 : 16位总长度(字节数)1.5 : 8位生存时间(TTL)1.6 : 8 位协议1.7 : 32 位源IP / 32 位目的IP 一: 报头格式 1.1 : 4位版本 现在使用的也就只有IPv4,IPv6 1.2 : 4位首部长度 以 4字节为单位…

Xilinx(AMD) vivado对FPGA网表文件进行功能仿真的方法

1 概述 在FPGA开发中很多商用IP核出于知识产权保护的目的&#xff0c;不提供源代码&#xff0c;而是提供综合后的FPGA网表。由于没有源代码&#xff0c;也无法对网表文件直接进行仿真的操作来验证功能&#xff0c;此时需要独立的仿真模型文件。 本文介绍在Xilinx(AMD) vivado软…

【解决问题】QApplication: No such file or directory,C++ 使用Qt或项目未正确加载Cmake报错

运行环境&#xff1a; Clion编译&#xff0c;构建C工程项目报错QApplication: No such file or directory 问题描述 QApplication: No such file or directory 引用的#include <QApplication>飘红 解决方案 1、Qt没有安装正确&#xff0c;请使用对应版本的Qt。或编译…

激光点云配准算法——Cofinet / GeoTransforme / MAC

激光点云配准算法——Cofinet / GeoTransformer / MAC GeoTransformer MAC是当前最SOTA的点云匹配算法&#xff0c;在之前我用总结过视觉特征匹配的相关算法 视觉SLAM总结——SuperPoint / SuperGlue 本篇博客对Cofinet、GeoTransformer、MAC三篇论文进行简单总结 1. Cofine…

Nginx之正向代理配置示例和说明

一、NGINX正向代理功能简介 Nginx的正向代理功能允许局域网中的客户端通过代理服务器访问Internet资源。具体来说&#xff0c;Nginx作为一种流行的Web服务器和反向代理服务器&#xff0c;在正向代理方面的应用也相当实用。以下是其正向代理功能的几个关键点&#xff1a; 访问外…

使用手机做PC机摄像头

准备工作&#xff1a; 带摄像头的安卓手机一部模拟相机软件&#xff1a;Iriun 、DroidCam 、IP摄像头pythonopencv 一、Iriun 1、分别在PC和手机上安装 2、手机和PC在同一个局域网 3、分别打开PC和手机端软件&#xff0c;电脑端就可以使用手机相机 ​ 二、 DroidCam 1、…

开发小Tips:切换淘宝,腾讯,官方,yarn,cnpm镜像源,nrm包管理工具的具体使用方式(方便切换镜像源)

由于开发中经常要下载一些软件或者依赖&#xff0c;且大多数的官方源的服务器都在国外&#xff0c;网速比较慢&#xff0c;国内为了方便&#xff0c;国内一些大厂就建立一些镜像&#xff0c;加快下载速度。 1.各大镜像源的切换&#xff1a; 切换淘宝镜像源&#xff1a; npm …

数据挖掘丨轻松应用RapidMiner机器学习内置数据分析案例模板详解(上篇)

RapidMiner 案例模板 RapidMiner 机器学习平台提供了一个可视化的操作界面&#xff0c;允许用户通过拖放的方式构建数据分析流程。 RapidMiner目前内置了 13 种案例模板&#xff0c;这些模板是预定义的数据分析流程&#xff0c;可以帮助用户快速启动和执行常见的数据分析任务。…

Zabbix6.0自动发现Linux服务器并添加主机

文章目录 一、整体流程二、操作过程 一、整体流程 Zabbix自动发现主机功能是Zabbix监控系统的一个重要功能&#xff0c;它能够自动发现并添加新的主机到监控系统中&#xff0c;从而减少人为繁琐的操作&#xff01; 步骤操作1️⃣ 第一步创建自动发现规则2️⃣ ​第二步创建自…

安卓事件交互(按键事件、触摸事件、手势识别、手势冲突处理)

本章介绍App开发常见的以下事件交互技术&#xff0c;主要包括&#xff1a;如何检测并接管按键事件&#xff0c;如何对触摸事件进行分发、拦截与处理&#xff0c;如何根据触摸行为辨别几种手势动作&#xff0c;如何正确避免手势冲突的意外状况。 按键事件 本节介绍App开发对按…

[qt] qt程序打包以及docker镜像打包

目录 一 环境准备: 1.1 qt环境 1.2 linuxdeplouqt打包工具 二 qt包发布: 2.1 搜索链接库 2.2 应用程序APP打包 2.3 发布 三 docker镜像包发布 3.1 环境准备 3.2 镜像生产脚本 3.3 加载镜像并运行docker容器 一 环境准备: qt环境linuxdeployqt打包工具docker环境 1…

demo xshell (程序替换 工作目录 内建命令)

1.程序替换 在学习完一些列的进程替换接口之后我们大概就能知道&#xff0c;我们的环境变量以及命令行参数是如何传递给子进程的&#xff0c;这些参数是我们在调用进程替换时就传给了子进程的数据。 那么如果我们自己要实现一个简单的命令行解释器&#xff0c;我们是不是首先…

stm32MP135裸机编程:使用USB/UART烧录程序到SD卡并从SD卡启动点亮一颗LED灯

0 参考资料 轻松使用STM32MP13x - 如MCU般在cortex A核上裸跑应用程序.pdf STM32CubeProgrammer v2.16.0 烧录需要的二进制文件1 烧录到SD卡需要哪些文件 参考《轻松使用STM32MP13x - 如MCU般在cortex A核上裸跑应用程序》&#xff0c;烧录需要的SD卡文件如下&#xff1a; &a…

教育的数字化转型——Kompas.ai如何变革学习体验

引言 在现代教育中&#xff0c;数字化转型逐渐成为提升学习效果的重要手段。随着科技的进步&#xff0c;人工智能&#xff08;AI&#xff09;在教育领域的应用越来越广泛。本文将探讨教育数字化转型的发展趋势&#xff0c;并介绍Kompas.ai如何通过AI技术变革学习体验。 教育数…

LNMP配置

文章目录 一、相关概念CGI的由来FastCGIPHP-FPM 二、编译安装编译安装nginxyum安装mysql编译安装php配置nginx支持php解析增加数据库安装论坛 一、相关概念 CGI的由来 最早的Web服务器只能简单地响应浏览器发来的HTTP请求&#xff0c;并将存储在服务器上的HTML文件返回给浏览器…

gdb 【Linux】

程序发布方式&#xff1a;  1、debug版本&#xff1a;程序会被加入调试信息&#xff0c;以便于进行调试。  2、release版本&#xff1a;不添加任何调试信息&#xff0c;是不可调试   确定一个可执行程序是debug&#xff0c;还是release [cxqiZ7xviiy0goapxtblgih6oZ test_g…

python科研做图系列之时序图的绘制——对比折线图

参考知乎 折线图 我需要从两个不同的excel都读取第一列作为时间列,第二列作为编码列。 在同一张图上画出两条时间序列的折线图 横坐标是分钟,纵坐标是编码 帮我画的好看一些,记得解决中文乱码问题 英文版折线图 ,先搞个英文版,导师要求中文的话,再换成中文版 impor…

[Algorithm][动态规划][完全背包问题][零钱兑换][零钱兑换Ⅱ][完全平方数]详细讲解

目录 1.零钱兑换1.题目链接2.算法原理详解3.代码实现 2.零钱兑换 II1.题目链接2.算法原理详解3.代码实现 3.完全平方数1.题目链接2.算法原理详解3.代码实现 1.零钱兑换 1.题目链接 零钱兑换 2.算法原理详解 思路&#xff1a; 确定状态表示 -> dp[i][j]的含义 dp[i][j]&am…

QSqlDatabase、QSqlQuery、QSqlRecord、Sqlite用法

使用QSqlDatabase、QSqlQuery、QSqlRecord、Sqlite数据库实现一个简单的界面查询 1. 创建Sqlite数据库&#xff0c;表 mainwindow.cpp #include "mainwindow.h" #include "ui_mainwindow.h" #include "QSqlDatabase" #include "QSqlQuery&q…

【计算机毕业设计】273基于微信小程序的刷题系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…