跟着野火从零开始手搓FreeRTOS(6)多优先级的配置

        在 FreeRTOS 中,数字优先级越小,逻辑优先级也越小。

        之前提过,就绪列表其实就是一个数组, 里面存的是就绪任务的TCB(准确来说是 TCB 里面的 xStateListItem 节点),数组的下标对应任务的优先级,优先级越低对应的数组下标越小。空闲任务的优先级最低,对应的下标为 0 。

        任务在创建的时候,会根据任务的优先级将任务插入到就绪列表不同的位置。相同优先级的任务插入到就绪列表里面的同一条链表中,按照时间片轮转的方式交替运行。

        pxCurrenTCB 是一个全局的 TCB 指针,用于当前正在运行的 TCB 。所以想要实现优先级,只要在任务切换的时候让 pxCurrenTCB 指向最高优先级的就绪任务的 TCB 即可。

        FreeRTOS 提供了两种方法,一套是通用的,一套是根据特定的处理器优化过的。

前期变量定义

        首先需要定义空闲任务的优先级,还要定义一个表示创建任务的最高优先级的静态变量uxTopReadyPriority,默认这个变量的值为0,即空闲任务的优先级。

/* 空闲任务的优先级,task.h定义 */
#define tskIDLE_PRIORITY			       ( ( UBaseType_t ) 0U )
/* uxTopReadyPriority,定义task.c定义 */
static volatile UBaseType_t uxTopReadyPriority 		= tskIDLE_PRIORITY;

    通用方法

        寻找优先级的实现在 task.c 中实现。

        寻找最高优先级的方法通过宏configUSE_PORT_OPTIMISED_TASK_SELECTION来控制,为0是通用方法,1是优化方法。这个宏在 portmacro.h 中定义为1。 

获取最高优先级函数taskRECORD_READY_PRIORITY()

        调用taskRECORD_READY_PRIORITY()来更新uxTopReadyPriority的值,获得最高优先级。之后将通过uxTopReadyPriority的值,来确定就绪任务。

/* 查找最高优先级的就绪任务:通用方法 */                                    
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )#define taskRECORD_READY_PRIORITY( uxPriority )														\{																									\if( ( uxPriority ) > uxTopReadyPriority )														\{																								\uxTopReadyPriority = ( uxPriority );														\}																								\} #define taskSELECT_HIGHEST_PRIORITY_TASK()															\{																									\UBaseType_t uxTopPriority = uxTopReadyPriority;														\\/* 寻找包含就绪任务的最高优先级的队列 */                                                          \while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) )							\{																								\--uxTopPriority;																			\}																								\\/* 获取优先级最高的就绪任务的TCB,然后更新到pxCurrentTCB */							            \listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );			\/* 更新uxTopReadyPriority */                                                                    \uxTopReadyPriority = uxTopPriority;																\} /* taskSELECT_HIGHEST_PRIORITY_TASK */

 寻找最高优先级就绪任务taskSELECT_HIGHEST_PRIORITY_TASK()

         taskSELECT_HIGHEST_PRIORITY_TASK()实现寻找最高优先级任务的功能,将uxTopReadyPriority和pxCurrentTCB 的值更新为优先级最高的就绪任务对应的值。

        这个函数首先将上一步获取的最大优先级取出来,通过while循环判断当前优先级对应的链表里有没有任务。因为FreeRTOS的优先级越小,对应的数字越小,所以如果检测不到当前链表下的任务,那么就让优先级减一再去进行判断。循环往复,直到检测到链表中的任务为止,跳出循环。

        之后获取这个任务的TCB,更新uxTopReadyPriority和pxCurrentTCB的值,至此确定好了优先级。

优化方法

        这里还是借用野火的图和例子:

        Cortex-M内核有一个计算前导零的指令CLZ,所谓前导零就是计算一个变量从高位开始第一次出现 1 的位的前面的零的个数。 比如: 一个 32 位的变量 uxTopReadyPriority, 其位 0、位 24 和 位 25 均 置 1 , 其 余 位 为 0 。 那 么 使 用 前 导 零 指 令 __CLZ (uxTopReadyPriority)可以很快的计算出 uxTopReadyPriority 的前导零的个数为 6。

        如果 uxTopReadyPriority 的每个位号对应的是任务的优先级,任务就绪时,则将对应的位置 1,反之则清零。那么上述例子中优先级 0、优先级 24 和优先级 25 这三个任务中优先级为 25 的任务优先级最高。利用前导零计算指令可以很快计算出就绪任务中的最高优先级为:

( 31UL  -  ( uint32_t ) __clz( ( uxReadyPriorities ) ) ) = ( 31UL - ( uint32_t ) 6 ) = 25。

        概括来讲,优化方法就是用位数-1来减去前导零的个数来得到最高优先级。

        首先在portmacro.h中定义需要的两个函数并根据优先级修改相应的位。

define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )

优先级修改函数taskRECORD_READY_PRIORITY()与taskRESET_READY_PRIORITY()

        taskRECORD_READY_PRIORITY()可以根据传入的形参(一般就是任务的优先级)将uxTopReadyPriority的某个位置1,通过上述例子提到的方法,通过计算前导零的个数来得到最高优先级。taskRESET_READY_PRIORITY()则与之相反,它会将某个位清0。

        需要注意的是,taskRESET_READY_PRIORITY()清0前要先保证就绪列表中对应优先级下的链表中没有任务。

        之后使用taskSELECT_HIGHEST_PRIORITY_TASK()寻找最高优先级就绪任务。这个函数实现的功能和通用方法的基本一致,只不过这里是将最高优先级存到局部变量uxTopPriority中。

/* 这两个宏定义只有在选择优化方法时才用,这里定义为空 */#define taskRESET_READY_PRIORITY( uxPriority )#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )/* 查找最高优先级的就绪任务:根据处理器架构优化后的方法 */
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */#define taskRECORD_READY_PRIORITY( uxPriority )	portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )/*-----------------------------------------------------------*/#define taskSELECT_HIGHEST_PRIORITY_TASK()														    \{																								    \UBaseType_t uxTopPriority;																		    \\/* 寻找最高优先级 */								                            \portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority );								    \/* 获取优先级最高的就绪任务的TCB,然后更新到pxCurrentTCB */                                       \listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );		    \} /* taskSELECT_HIGHEST_PRIORITY_TASK() *//*-----------------------------------------------------------*/
#if 0#define taskRESET_READY_PRIORITY( uxPriority )														\{																									\if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 )	\{																								\portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );							\}																								\}
#else#define taskRESET_READY_PRIORITY( uxPriority )											            \{																							        \portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );					        \}
#endif#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/2352.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Camera Sensor Driver笔记】五、点亮指南之Actuator配置

<slaveInfo> actuatorName dw9714v dirver IC 型号 slaveAddress 0x18 i2c write address i2cFrequencyMode FAST i2c 操作频率(400KHz) actuatorType VCM/BIVCM 马达类型 BIVCM&#xff08;中置马达&#xff…

ROS 2边学边练(33)-- 写一个静态广播(C++)

前言 通过这一篇我们将了解并学习到如何广播静态坐标变换到tf2&#xff08;由tf2来转换这些坐标系&#xff09;。 发布静态变换对于定义机器人底座与其传感器或非移动部件之间的关系非常有用。例如&#xff0c;在以激光扫描仪中心的坐标系中推理激光扫描测量数据是最简单的。 这…

服务器 BMC(基板管理控制器,Baseboard Management Controller)认知

写在前面 工作中遇到&#xff0c;简单整理博文内容涉及 BMC 基本认知理解不足小伙伴帮忙指正 不必太纠结于当下&#xff0c;也不必太忧虑未来&#xff0c;当你经历过一些事情的时候&#xff0c;眼前的风景已经和从前不一样了。——村上春树 基板管理控制器&#xff08;BMC&…

数字孪生创新工作流,助力百年大桥翻修

利用 Bentley 的 iTwin Capture 和 iTwin Experience 创建数字孪生模型&#xff0c;将现场施工时间缩短了 20% 重要交通枢纽焕然一新 罗伯特街大桥位于明尼苏达州圣保罗市&#xff0c;外观呈彩虹样拱形&#xff0c;近 100 年来一直是圣保罗市的标志性建筑。这座八跨钢筋混凝土…

Linux复习提纲2

Linux复习提纲 Linux概述 shell&#xff1a;交互式命令解释程序&#xff1b;用户和内核间交互的桥梁Shell不仅是交互式命令解释程序&#xff0c;还是一种程序设计语言shell是一种命令解释程序&#xff0c;批处理shell是linux的外壳&#xff0c;默认是bash2.1 Linux基础概念 log…

线上剧本杀小程序开发,未来行业的发展趋势?

当下&#xff0c;剧本杀成为了大众最喜欢的娱乐方式之一&#xff0c;作为以沉浸式为主的剧本杀正成为新时代下的发展潮流。 数据显示&#xff0c;剧本杀行业已达到了百亿元。面对发展迅猛的剧本杀市场&#xff0c;越来越多的资本进入到了市场中&#xff0c;剧本杀的产业链也逐…

【C语言】手撕二叉树

标题&#xff1a;【C语言】手撕二叉树 水墨不写bug 正文开始&#xff1a; 二叉树是一种基本的树形数据结构&#xff0c;对于初学者学习树形结构而言较容易接受。二叉树作为一种数据结构&#xff0c;在单纯存储数据方面没有 顺序表&#xff0c;链表&#xff0c;队列等线性结构…

菜鸟Java面向对象 2. Java 重写(Override)与重载(Overload)

Java 重写(Override)与重载(Overload) Java 重写与重载 Java 重写(Override)与重载(Overload)1. 重写(Override)1. 概念解释&#xff1a;2. 好处说明3. 异常规则处理 2. 方法的重写规则3. Super 关键字的使用4. 重载(Overload)**重载规则:**实例 5. 重写与重载之间的区别总结 1…

什么是手机运营商三要素验证API接口

手机运营商三要素验证API接口又叫手机运营商三要素核验API接口&#xff0c;指的是输入姓名、身份证号码及手机号&#xff0c;通过运营商数据库实时校验此三项是否匹配。手机运营商三要素核验API接口广泛用于实名注册、风控审核等场景&#xff0c;如电商、直播、游戏、金融等。接…

Leetcode刷题之链表小结(1)|92反转链表|206反转链表

TOC 小结 1. 如何反转某一个节点的指向? 206反转链表(简单)的递归解法——该方法的理念是: 若节点k1到节点m已经被反转&#xff0c;而我们当前处于k位置&#xff0c;那么我们希望k1指向k, 体现在以下代码的head->next->next head;这一句,可以记做一种常用的反转单个…

AI+招聘,激活企业的「新质生产力」

两会以来&#xff0c;「新质生产力」成为热词。而所谓的新质生产力&#xff0c;是创新起主导作用&#xff0c;摆脱传统经济增长方式、生产力发展路径&#xff0c;具有高科技、高效能、高质量特征&#xff0c;符合新发展理念的先进生产力质态。新质之「新」&#xff0c;很重要的…

wandb注册 wandb: ERROR api_key

wandb: ERROR api_key not configured (no-tty). call wandb.login(key[your_api_key]) Traceback (most recent call last): 背景 使用yolov8训练时 在pycharm中出现wandb账号未注册错误 Transferred 355/355 items from pretrained weights TensorBoard: Start with tensor…

平衡二叉树(AVLTree)

AVLTree 1、树的分类2、平衡二叉树2.1、构建一个平衡二叉树2.2、删除节点2.3、搜索方式2.3.1、广度优先搜索&#xff08;BFS&#xff09;2.3.2、深度优先搜索&#xff08;DFS&#xff09; 1、树的分类 树形结构是编程当中特别常见的一种数据结构。比如电脑中的文件管理系统就大…

(超级详细)JAVA之Stream流分析-------持续更新喔!!!

学习目标&#xff1a; 掌握 Java Stream流的相关api 掌握 Java Stream流的基本实现 掌握 java Stream流的使用场景 代码已经整理上传到了gitee中&#xff0c;有需要的小伙伴可以取查看一下源码点个小心心喔 大家也可以帮我提交一点案例喔&#xff01;&#xff01;&#xff01;&…

【QT进阶】Qt Web混合编程之使用ECharts显示各类折线图等

往期回顾 【QT进阶】Qt Web混合编程之QWebEngineView基本用法-CSDN博客 【QT进阶】Qt Web混合编程之CMake VS2019编译并使用QCefView&#xff08;图文并茂超详细版本&#xff09;-CSDN博客【QT进阶】Qt Web混合编程之html、 js的简单交互-CSDN博客 【QT进阶】Qt Web混合编程之使…

【MATLAB源码-第196期】基于matlab的A*融合DWA算法栅格路径规划仿真,画出路径图、姿态角度以及线角速度。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 A算法与DWA算法的融合是一个高效的路径规划策略&#xff0c;这种策略将A算法的全局路径规划能力与DWA算法的局部避障能力结合起来&#xff0c;以期达到更快、更安全的导航效果。以下是对这种融合策略的详细描述。 一、基本概…

Linux thermal框架介绍

RK3568温控 cat /sys/class/thermal/thermal_zone0/temp cat /sys/class/thermal/thermal_zone1/temp cat /sys/class/thermal/cooling_device0/cur_state cat /sys/class/thermal/cooling_device1/cur_state cat /sys/class/thermal/cooling_device2/cur_state thermal_zone…

信息打点--公众号服务

微信公众号 获取微信公众号的途径https://weixin.sogou.com/ 微信公众号没有第三方服务 Github监控 人员&域名&邮箱 eg&#xff1a;xxx.cn password in:file https://gitee.com/ https://github.com/ https://www.huzhan.com/ 资源搜索 in:name test 仓库标题搜索含有…

ASP.NET教务管理平台-权限及公共模块设计与开发

摘 要 随着教育改革的不断深化&#xff0c;高等院校的建设与发展对国民整体素质的提高起着越来越重要的作用&#xff0c;建立一套能够适应这些改变的行政管理方案也就显得尤为重要。对于教务处来说&#xff0c;将信息技术用于校务管理中便是迫切的要求。 教务系统中的用户…

产品规划|如何从0到1规划设计一款产品?

我们要如何从0到1规划设计一款产品?在前期工作我们需要做什么呢?下面这篇文章就是关于此的相关内容,大家一起往下看多多了解了解吧! 一、什么是产品规划? 产品规划是一种策略,它设定了产品的价值和目标,并确定实施方案以实现这些目标。它考虑了产品的整个生命周期,基于…