Java基础29(编码算法 哈希算法 MD5 SHA—1 HMac 算法 堆成加密算法)

目录

一、编码算法

1. 常见编码

2. URL编码

3. Base64编码 

4. 小结

二、哈希算法

1. 哈希碰撞

2. 常用哈希算法

MD5算法

SHA-1算法 

自定义HashTools工具类

3. 哈希算法的用途

校验下载文件

 存储用户密码

4. 小结

三、Hmac算法

小结:

四、对称加密算法

1. 使用AES加密

ECB模式


一、编码算法

ASCII码就是一种编码,字母A的编码是十六进制的0x41,字母B是0x42,以此类推:

字母

ASCII编码

A

0x41

B

0x42

C

0x43

D

0x44

因为ASCII编码最多只能有127个字符,要想对更多的文字进行编码,就需要用占用2个字节的Unicode或者3个字节的UTF-8。例如:中文的"中"字使用Unicode编码就是0x4e2d,UTF-8编码是0xe4b8ad。

汉字

Unicode编码

UTF-8编码

0x4e2d

0xe4b8ad

0x6587

0xe69687

0x7f16

0xe7bc96

0x7801

0xe7a081

因此,最简单的编码是直接给每个字符指定一个若干字节表示的整数,复杂一点的编码就需要根据一个已有的编码推算出来。

1. 常见编码

ASCII码:ASCII码中只存储英文字符,有127个字符,占一个字节

Unicode码:可以存储中文,占两个字节

UTF-8:实际上是从Unicode码中推算出来的一种编码方式

URL编码是浏览器发送数据时的一种编码,通常附加在URL的参数部分。之所以需要,是因为很多服务器只能识别ASCII字符,对字符进行编码,URL它独有一套自己的编码规则。在java的类库中提供了URLEncoder类,来对任意字符串进行URL编码。

如果服务器收到URL编码,会对它自动进行解码

Base64编码:对二进制数据进行编码,转换成文本格式,这样在很多文本中就可以处理进制数据。
Base64编明是种编码算法。不是加密算法。

2. URL编码

URL编码是浏览器发送数据给服务器时使用的编码,它通常附加在URL的参数部分,例如:

https://www.baidu.com/s?wd=%E4%B8%AD%E6%96%87

之所以需要URL编码,是因为出于兼容性考虑,很多服务器只识别ASCII字符。但如果URL中包含中文、日文这些非ASCII字符怎么办?不要紧,URL编码有一套规则:

  • 如果字符是A~Z,a~z,0~9以及-、_、.、*,则保持不变;
  • 如果是其他字符,先转换为UTF-8编码,然后对每个字节以%XX表示。

例如:字符"中"的UTF-8编码是0xe4b8ad,因此,它的URL编码是%E4%B8%AD。URL编码总是大写。
Java标准库提供了一个URLEncoder类来对任意字符串进行URL编码:

//URLEncoder,url编码操作
//URLDecoder类,url解码操作
public class Demo01 {public static void main(String[] args) throws UnsupportedEncodingException {// 编码String keyWorld = "中文";String encodeString = URLEncoder.encode(keyWorld, "utf-8");System.out.println("编码:" + encodeString);//编码:%E4%B8%AD%E6%96%87}
}

如果服务器收到URL编码的字符串,就可以对其进行解码,还原成原始字符串。Java标准库的URLDecoder就可以解码:

// 解码String decodeString = URLDecoder.decode(encodeString, "utf-8");System.out.println(decodeString);//中文

要特别注意:URL编码是编码算法,不是加密算法。URL编码的目的是把任意文本数据编码为%前缀表示的文本,编码后的文本仅包含A~Z,a~z,0~9,-,_,.,*和%,便于浏览器和服务器处理。

//URL编码注意:
public class Demo02 {public static void main(String[] args) throws UnsupportedEncodingException {//编码只对中文内容进行处理  String keyWorld = "特斯拉";String encodeString = URLEncoder.encode(keyWorld, "utf-8");String urlString = "https://www.baidu.com/s?wd=";System.out.println(urlString + encodeString);//https://www.baidu.com/s?wd=%E7%89%B9%E6%96%AF%E6%8B%89//解码操作,url可以对整个链接进行解码String decodeString = URLDecoder.decode(urlString + encodeString, "utf-8");System.out.println(decodeString);//https://www.baidu.com/s?wd=特斯拉}
}

3. Base64编码 

        URL编码是对字符进行编码,表示成%xx的形式,而Base64编码是对二进制数据进行编码,表示成文本格式
        Base64编码可以把任意长度的二进制数据变为纯文本,并且纯文本内容中且只包含指定字符内容:A~Z、a~z、0~9、+、/、=。它的原理是把3字节的二进制数据按6bit一组,用4个int整数表示,然后查表,把int整数用索引对应到字符,得到编码后的字符串。
        6位整数的范围总是0~63,所以,能用64个字符表示:字符A~Z对应索引0~25,字符a~z对应索引26~51,字符0~9对应索引52~61,最后两个索引62、63分别用字符+和/表示。

        举个例子:3个byte数据分别是e4、b8、ad,按6bit分组得到十六进制39、0b、22和2d,分别对应十进制57、11、34、45,通过索引计算结果为5Lit4

在Java中,二进制数据就是byte[]数组。Java标准库提供了Base64来对byte[]数组进行编解码:

//Base64编码
//3字节信息一组,24-6位 4字符
public class Demo03 {public static void main(String[] args) {String string = "中";byte[] bytes = string.getBytes();// JDK1.8后才提供String encodeString = Base64.getEncoder().encodeToString(bytes);System.out.println(encodeString);// 5Lit// 解码byte[] decodeBytes = Base64.getDecoder().decode(encodeString);System.out.println(Arrays.toString(decodeBytes));// [-28, -72, -83]System.out.println(new String(decodeBytes));// 中}
}

将图片使用base64转成字符串并保存到a.txt中:

//将图片使用base64转成字符串并保存到a.txt中
//将a.txt中的信息使用base64解码,还原成图片写出
public class Demo04 {public static void main(String[] args) throws IOException {// 将一个图片进行编码,文件进行保存byte[] bytes = Files.readAllBytes(Paths.get("C:\\Users\\张柯堂\\Desktop\\头像.png"));String str = Base64.getEncoder().encodeToString(bytes);Files.write(Paths.get("a.txt"), str.getBytes());System.out.println("写出图片字符信息结束");// 解码// 读入信息byte[] readBytes = Files.readAllBytes(Paths.get("a.txt"));byte[] decodeBytes = Base64.getDecoder().decode(readBytes);Files.write(Paths.get("C:\\Users\\张柯堂\\Desktop\\copy.png"), decodeBytes);System.out.println("写出图片结束");}
}

因为标准的Base64编码会出现+、/和=,所以不适合把Base64编码后的字符串放到URL中。一种针对URL的Base64编码可以在URL中使用的Base64编码,它仅仅是把+变成-,/变成_:

public class Demo05 {public static void main(String[] args) {//+ ///	原始字节内byte[] input = new byte[] {2,-114,127,0};//使用两种编码方式对input转换/-->_ +-->-String str = Base64.getEncoder().encodeToString(input);String str1 = Base64.getUrlEncoder().encodeToString(input);System.out.println(str);//Ao5/AA==System.out.println(str1);//Ao5_AA==//解码操作byte[] byte1 =Base64.getDecoder().decode(str);byte[] byte2 =Base64.getUrlDecoder().decode(str1);//输出解码后的内容System.out.println(Arrays.toString(byte1));//[2, -114, 127, 0]System.out.println(Arrays.toString(byte2));//[2, -114, 127, 0]}
}

4. 小结

  • URL编码和Base64编码都是编码算法,它们不是加密算法;
  • URL编码的目的是把任意文本数据编码为%前缀表示的文本,便于浏览器和服务器处理;
  • Base64编码的目的是把任意二进制数据编码为文本,但编码后数据量会增加1/3。

二、哈希算法

哈希算法(Hash)又称摘要算法(Digest),它的作用是:对任意一组输入数据进行计算,得到一个固定长度的输出摘要。
哈希算法最重要的特点就是:

  • 相同的输入一定得到相同的输出;
  • 不同的输入大概率得到不同的输出。

所以,哈希算法的目的:为了验证原始数据是否被篡改。

两个相同的字符串永远会计算出相同的hashCode,否则基于hashCode定位的HashMap就无法正常工作。这也是为什么当我们自定义一个class时,覆写equals()方法时我们必须正确覆写hashCode()方法。

1. 哈希碰撞

哈希碰撞是指:两个不同的输入得到了相同的输出。

碰撞能不能避免?答案是不能。碰撞是一定会出现的,因为输出的字节长度是固定的,String的hashCode()输出是4字节整数,最多只有4294967296种输出,但输入的数据长度是不固定的,有无数种输入。所以,哈希算法是把一个无限的输入集合映射到一个有限的输出集合,必然会产生碰撞。
碰撞不可怕,我们担心的不是碰撞,而是碰撞的概率,因为碰撞概率的高低关系到哈希算法的安全性。一个安全的哈希算法必须满足:

  • 碰撞概率低;
  • 不能猜测输出。

不能猜测输出是指:输入的任意一个bit的变化会造成输出完全不同,这样就很难从输出反推输入(只能依靠暴力穷举)。

2. 常用哈希算法

哈希算法,根据碰撞概率,哈希算法的输出长度越长,就越难产生碰撞,也就越安全。

常用的哈希算法有:

算法

输出长度(位)

输出长度(字节)

MD5

128 bits

16 bytes

SHA-1

160 bits

20 bytes

RipeMD-160

160 bits

20 bytes

SHA-256

256 bits

32 bytes

SHA-512

512 bits

64 bytes

MD5算法

Java标准库提供了常用的哈希算法,通过统一的接口进行调用。 以MD5算法为例,看看如何对输入内容计算哈希:
public class Demo01 {public static void main(String[] args) throws NoSuchAlgorithmException {//获取消息摘要对象MessageDigest md = MessageDigest.getInstance("MD5");//1.使用Md5进行消息加密
//		byte[]str ="还想继续考研".getBytes();
//		byte[]b=md.digest(str);
//		System.out.println("加密前的信息:"+Arrays.toString(str));//加密前的信息:[-24, -65, -104, -26, -125, -77, -25, -69, -89, -25, -69, -83, -24, -128, -125, -25, -96, -108]
//		System.out.println("加密后的信息:"+Arrays.toString(b));//加密后的信息:[-119, -28, -47, 120, 114, -79, 7, -1, 59, -98, -69, 65, -37, -111, -87, -120]
//		System.out.println("加密信息的长度:"+b.length);//加密信息的长度:16//		// 2.大量的数据进行加密md.update("还是想考研".getBytes());md.update("zkt".getBytes());md.update("c罗".getBytes());//3.加密byte[] result = md.digest();System.out.println("加密后的信息"+Arrays.toString(result));//加密后的信息[-52, 50, -102, -69, -95, 11, -59, -6, 68, -125, 74, -45, 6, 26, 108, 75]System.out.println("加密信息的长度"+result.length);//加密信息的长度16System.out.println("转16进制的字符串"+byteToString(result));//转16进制的字符串cc329abba10bc5fa44834ad3061a6c4b}public static String byteToString(byte[] b) {StringBuilder sb = new StringBuilder();for (byte c : b) {// 1.将10字节数字转成16进制的字符串sb.append(String.format("%02x", c));}return sb.toString();}
}

使用MessageDigest时,我们首先根据哈希算法获取一个MessageDigest实例,然后,反复调用update(byte[])输入数据。当输入结束后,调用digest()方法获得byte[]数组表示的摘要,最后,把它转换为十六进制的字符串。


使用MD5算法来对图片进行加密

//使用MD5算法来对图片进行加密
public class Demo02 {public static void main(String[] args) throws IOException, NoSuchAlgorithmException {byte[] image =Files.readAllBytes(Paths.get("C:\\Users\\张柯堂\\Desktop\\头像.png"));//获取消息摘要对象MessageDigest md5 = MessageDigest.getInstance("MD5");//加密byte[] bytes = md5.digest(image);System.out.println(Demo01.byteToString(bytes));//21f50de91db2ce9a80ccfd2f916d13a0}
}

SHA-1算法 

SHA-1也是一种哈希算法,它的输出是160 bits,即20字节。SHA-1是由美国国家安全局开发的,SHA算法实际上是一个系列,包括SHA-0(已废弃)、SHA-1、SHA-256、SHA-512等。
在Java中使用SHA-1,和MD5完全一样,只需要把算法名称改为"SHA-1":

public class Demo05 {public static void main(String[] args) throws NoSuchAlgorithmException {// 1.需要加密的信息byte[] passwold = "123456".getBytes();// 2.创建信息摘要对象MessageDigest sha_1 = MessageDigest.getInstance("SHA-1");// 3.update()sha_1.update(passwold);// 4.加密--16进制的字符串byte[] result = sha_1.digest();System.out.println("加密后的信息:" + Arrays.toString(result));System.out.println("加密后的长度:" + result.length);System.out.println(Demo01.byteToString(result));}}

自定义HashTools工具类

HashTools类:

public class HashTools {//创建消息摘要对象作为静态变量private static MessageDigest mesDig;//md5加密算法加密信息public static String messageMd5(byte[] bytes) throws NoSuchAlgorithmException {mesDig = MessageDigest.getInstance("MD5");return handle(bytes);}//sha-1加密算法加密信息public static String messageSha_1(byte[] bytes) throws NoSuchAlgorithmException {mesDig = MessageDigest.getInstance("SHA-1");return handle(bytes);}//进行加密操作public static String handle(byte[] bytes) {mesDig.update(bytes);byte[] result = mesDig.digest();return byteToString(result);}//将字节数组转16进制的字符串public static String byteToString(byte[] b) {StringBuilder sb = new StringBuilder();for (byte c : b) {// 1.将10字节数字转成16进制的字符串//2.追加到StringBuilder类中sb.append(String.format("%02x", c));}return sb.toString();}//str是个16进制的字符串,每两个字符表示一个字节信息//将16进制的字符串转10进制的字节数组public static byte[] stringTobyte(String str) {byte[] result = new byte[str.length() / 2];for (int i = 0, j = 0; i < str.length(); i = i + 2, j++) {//int num = Integer.parseInt(str.substring(i, i + 2), 16);Byte num = Byte.parseByte(str.substring(i, i + 2), 16);result[j] = (byte)num;}return result;}
}
public class Demo06 {public static void main(String[] args) throws NoSuchAlgorithmException {byte[]  passWorldString = "123456".getBytes();//MD5String resultMd5=HashTools.messageMd5(passWorldString);//SHA-1String reulstSha1=HashTools.messageSha_1(passWorldString);System.out.println(resultMd5.length());//32System.out.println(reulstSha1.length());//40}}

3. 哈希算法的用途

校验下载文件

因为相同的输入永远会得到相同的输出,因此,如果输入被修改了,得到的输出就会不同。我们在网站上下载软件的时候,经常看到下载页显示的MD5哈希值: 如何判断下载到本地的软件是原始的、未经篡改的文件?我们只需要自己计算一下本地文件的哈希值,再与官网公开的哈希值对比,如果相同,说明文件下载正确,否则,说明文件已被篡改。

 存储用户密码

哈希算法的另一个重要用途是存储用户口令。如果直接将用户的原始口令存放到数据库中,会产生极大的安全风险:

  • 数据库管理员能够看到用户明文口令;
  • 数据库数据一旦泄漏,黑客即可获取用户明文口令。

username

password

bob

123456789

alice

sdfsdfsdf

tim

justdoit

不存储用户的原始口令,那么如何对用户进行认证?方法是存储用户口令的哈希,例如,MD5。在用户输入原始口令后,系统计算用户输入的原始口令的MD5并与数据库存储的MD5对比,如果一致,说明口令正确,否则,口令错误。
因此,数据库存储用户名和口令的表内容应该像下面这样:

username

password

bob

25f9e794323b453885f5181f1b624d0b

alice

73a90acaae2b1ccc0e969709665bc62f

tim

19f9f30bd097d4c066d758fb01b75032

这样一来,数据库管理员看不到用户的原始口令。即使数据库泄漏,黑客也无法拿到用户的原始口令。想要拿到用户的原始口令,必须用暴力穷举的方法,一个口令一个口令地试,直到某个口令计算的MD5恰好等于指定值。
使用哈希口令时,还要注意防止彩虹表攻击。
什么是彩虹表呢?上面讲到了,如果只拿到MD5,从MD5反推明文口令,只能使用暴力穷举的方法。然而黑客并不笨,暴力穷举会消耗大量的算力和时间。但是,如果有一个预先计算好的常用口令和它们的MD5的对照表,这个表就是彩虹表。如果用户使用了常用口令,黑客从MD5一下就能反查到原始口令:

常用口令

MD5

hello123

f30aa7a662c728b7407c54ae6bfd27d1

12345678

25d55ad283aa400af464c76d713c07ad

passw0rd

bed128365216c019988915ed3add75fb

19700101

570da6d5277a646f6552b8832012f5dc

wbjxxmy

11d7a82f45f6a176fd9d5c100ccab40a

这就是为什么不要使用常用密码,以及不要使用生日作为密码的原因。
当然,我们也可以采取特殊措施来抵御彩虹表攻击:对每个口令额外添加随机数,这个方法称之为加盐(salt):
digest = md5(salt + inputPassword)

经过加盐处理的数据库表,内容如下:

username

salt

password

bob

H1r0a

a5022319ff4c56955e22a74abcc2c210

alice

7$p2w

e5de688c99e961ed6e560b972dab8b6a

tim

z5Sk9

1eee304b92dc0d105904e7ab58fd2f64

//通过随机盐值,低于彩虹表攻击
public class Demo03 {public static void main(String[] args) throws NoSuchAlgorithmException {byte[] passworld = "123456".getBytes();// 获取消息摘要对象MessageDigest md5 = MessageDigest.getInstance("MD5");// 原始密码信息添加进去md5.update(passworld);// 产生随机的盐值,并添加进去,进行加盐操作String uuidString = UUID.randomUUID().toString().substring(0, 6);md5.update(uuidString.getBytes());System.out.println(uuidString);//73242dbyte[] result = md5.digest();System.out.println("加密后的字节数组:" + Arrays.toString(result));//加密后的字节数组:[57, 38, 44, -69, -126, -103, 126, 24, 76, -101, -53, 105, 68, -84, -21, -104]System.out.println("加密后的字符串:" + Demo01.byteToString(result));//加密后的字符串:39262cbb82997e184c9bcb6944aceb98}
}

4. 小结

  • 哈希算法可用于验证数据完整性,具有防篡改检测的功能;
  • 常用的哈希算法有MD5、SHA-1等;
  • 用哈希存储口令时要考虑彩虹表攻击

三、Hmac算法

在前面讲到哈希算法时,我们说,存储用户的哈希口令时,要加盐存储,目的就在于抵御彩虹表攻击。我们回顾一下哈希算法:digest = hash(input)
正是因为相同的输入会产生相同的输出,我们加盐的目的就在于,使得输入有所变化:
digest = hash(salt + input)
这个salt可以看作是一个额外的“认证码”,同样的输入,不同的认证码,会产生不同的输出。因此,要验证输出的哈希,必须同时提供“认证码”。

Hmac算法就是一种基于密钥的消息认证码算法,它的全称是Hash-based Message Authentication Code,是一种更安全的消息摘要算法。
Hmac算法总是和某种哈希算法配合起来用的。例如,我们使用MD5算法,对应的就是Hmac MD5算法,它相当于“加盐”的MD5:HmacMD5 ≈ md5(secure_random_key, input)
因此,HmacMD5可以看作带有一个安全的key的MD5。使用HmacMD5而不是用MD5加salt,有如下好处:

  • HmacMD5使用的key长度是64字节,更安全;
  • Hmac是标准算法,同样适用于SHA-1等其他哈希算法;
  • Hmac输出和原有的哈希算法长度一致。

可见,Hmac本质上就是把key混入摘要的算法。验证此哈希时,除了原始的输入数据,还要提供key。为了保证安全,我们不会自己指定key,而是通过Java标准库的KeyGenerator生成一个安全的随机的key。

//Hmac算法-链接md5
public class Demo06 {public static void main(String[] args) throws NoSuchAlgorithmException, InvalidKeyException {
//		1.通过名称HmacMD5获取KeyGenerator实例;KeyGenerator key = KeyGenerator.getInstance("HmacMD5");
//		2.通过KeyGenerator创建一个SecretKey实例;SecretKey secretKey = key.generateKey();System.out.println("密钥数组:"+Arrays.toString(secretKey.getEncoded()));System.out.println("密钥长度:"+secretKey.getEncoded().length);System.out.println("密钥字符串:"+HashTools.byteToString(secretKey.getEncoded()));//		3.通过名称HmacMD5获取Mac实例;Mac macMd5 = Mac.getInstance("HmacMD5");
//		4.用SecretKey初始化Mac实例;macMd5.init(secretKey);
//		5.对Mac实例反复调用update(byte[])输入数据;byte[] bytes = "hxjxky".getBytes();macMd5.update(bytes);
//		6.调用Mac实例的doFinal()获取最终的哈希值。byte[] result = macMd5.doFinal();System.out.println("密钥数组:"+Arrays.toString(result));System.out.println("密钥长度:"+result.length);System.out.println("密钥字符串:"+HashTools.byteToString(result));}
}运行结果:
密钥数组:[-36, -58, -62, -96, 52, -96, -28, -43, 29, -20, -73, 126, 110, -120, 26, -2, -16, -79, 111, 48, -111, 119, -104, -76, -71, -61, 48, 1, 88, 45, 85, -112, -21, -94, -19, -104, 17, 13, 34, 23, 79, 13, 4, 96, 32, -105, -108, -10, 121, -47, -85, 49, 8, -108, 22, 116, 39, -126, 17, 56, 15, -84, 114, -94]
密钥长度:64
密钥字符串:dcc6c2a034a0e4d51decb77e6e881afef0b16f30917798b4b9c33001582d5590eba2ed98110d22174f0d0460209794f679d1ab3108941674278211380fac72a2
密钥数组:[-111, -50, 96, 58, -120, -34, -57, -74, 113, 124, -113, -70, -91, 39, 126, 58]
密钥长度:16
密钥字符串:91ce603a88dec7b6717c8fbaa5277e3a

和MD5相比,使用HmacMD5的步骤是:

  1. 通过名称HmacMD5获取KeyGenerator实例;
  2. 通过KeyGenerator创建一个SecretKey实例;
  3. 通过名称HmacMD5获取Mac实例;
  4. 用SecretKey初始化Mac实例;
  5. 对Mac实例反复调用update(byte[])输入数据;
  6. 调用Mac实例的doFinal()获取最终的哈希值。

我们可以用Hmac算法取代原有的自定义的加盐算法,因此,存储用户名和口令的数据库结构如下:

username

secret_key (64 bytes)

password

bob

a8c06e05f92e...5e16

7e0387872a57c85ef6dddbaa12f376de

alice

e6a343693985...f4be

c1f929ac2552642b302e739bc0cdbaac

tim

f27a973dfdc0...6003

af57651c3a8a73303515804d4af43790

有了Hmac计算的哈希和SecretKey,我们想要验证怎么办?这时,SecretKey不能从KeyGenerator生成,而是从一个byte[]数组恢复:
//密钥数组:[53, 11, 1, 43, -63, -58, -22, -65, 99, 41, 78, 76, 99, -84, 99, 66, -115, 106, 28, -14, -52, 45, 32, 64, 29, 118, 18, 105, 28, 14, 26, 63, -84, -34, -41, 8, 116, -78, 13, 124, -16, 60, -64, -124, -2, -55, 25, -84, 104, -56, -84, 39, -68, -27, 13, 127, -117, -102, 31, 75, 42, 24, 37, -127]//密钥长度:64
//密钥字符串:350b012bc1c6eabf63294e4c63ac63428d6a1cf2cc2d20401d7612691c0e1a3facded70874b20d7cf03cc084fec919ac68c8ac27bce50d7f8b9a1f4b2a182581
//密钥数组:[-73, 87, 121, 49, 11, -15, 82, 65, -80, 124, -110, 73, -119, -28, -32, -42]
//密钥长度:16
//密钥字符串:b75779310bf15241b07c924989e4e0d6public class Demo07 {public static void main(String[] args) throws NoSuchAlgorithmException, InvalidKeyException {
//		byte[] keybytes = { 53, 11, 1, 43, -63, -58, -22, -65, 99, 41, 78, 76, 99, -84, 99, 66, -115, 106, 28, -14, -52,
//				45, 32, 64, 29, 118, 18, 105, 28, 14, 26, 63, -84, -34, -41, 8, 116, -78, 13, 124, -16, 60, -64, -124,
//				-2, -55, 25, -84, 104, -56, -84, 39, -68, -27, 13, 127, -117, -102, 31, 75, 42, 24, 37, -127 };String string = "350b012bc1c6eabf63294e4c63ac63428d6a1cf2cc2d20401d7612691c0e1a3facded70874b20d7cf03cc084fec919ac68c8ac27bce50d7f8b9a1f4b2a182581";byte[] keybytes = HashTools.stringTobyte(string);// 恢复密钥:参数1:密钥数组 参数2:算法方式SecretKey key = new SecretKeySpec(keybytes, "HmacMD5");Mac mac = Mac.getInstance("HmacMD5");mac.init(key);mac.update("hxjxky".getBytes());byte[] result = mac.doFinal();System.out.println(HashTools.byteToString(result));//b75779310bf15241b07c924989e4e0d6}
}

恢复SecretKey的语句就是new SecretKeySpec(keybytes, "HmacMD5")。

小结:

Hmac算法是一种标准的基于密钥的哈希算法,可以配合MD5、SHA-1等哈希算法,计算的摘要长度和原摘要算法长度相同。

四、对称加密算法

对称加密算法就是传统的用一个秘钥进行加密和解密。例如,我们常用的WinZIP和WinRAR对压缩包的加密和解密,就是使用对称加密算法:

l.jpg


从程序的角度看,所谓加密,就是这样一个函数,它接收密码和明文,然后输出密文:
secret = encrypt(key, message);

而解密则相反,它接收密码和密文,然后输出明文:
plain = decrypt(key, secret);


在软件开发中,常用的对称加密算法有:

算法

密钥长度

工作模式

填充模式

DES

56/64

ECB/CBC/PCBC/CTR/...

NoPadding/PKCS5Padding/...

AES

128/192/256

ECB/CBC/PCBC/CTR/...

NoPadding/PKCS5Padding/PKCS7Padding/...

IDEA

128

ECB

PKCS5Padding/PKCS7Padding/...

        密钥长度直接决定加密强度,而工作模式和填充模式可以看成是对称加密算法的参数和格式选择。Java标准库提供的算法实现并不包括所有的工作模式和所有填充模式。
        最后,值得注意的是,DES算法由于密钥过短,可以在短时间内被暴力破解,所以现在已经不安全了。

1. 使用AES加密

AES算法是目前应用最广泛的加密算法。比较常见的工作模式是ECB和CBC。

ECB模式

ECB模式是最简单的AES加密模式,它需要一个固定长度的密钥,固定的明文会生成固定的密文。
我们先用ECB模式加密并解密:

//AES+ECB
//1. 根据算法名称/工作模式/填充模式获取Cipher实例;
//2. 根据算法名称初始化一个SecretKey实例,密钥必须是指定长度;
//3. 使用SerectKey初始化Cipher实例,并设置加密或解密模式;
//4. 传入明文或密文,获得密文或明文。
public class Demo01 {public static void main(String[] args) throws InvalidKeyException, NoSuchAlgorithmException, NoSuchPaddingException,IllegalBlockSizeException, BadPaddingException, UnsupportedEncodingException {// 1.message keybyte[] key = "1234567890abcdef".getBytes();String message = "我本将心像明月";// 加密操作byte[] encodeByte = encodeMessage(key, message.getBytes());System.out.println("加密后的信息:" + HashTools.byteToString(encodeByte));// 解密操作byte[] decodeByte = decodeMessage(key, encodeByte);System.out.println("解密后的信息:" + new String(decodeByte));System.out.println("加密前的字节数组:" + Arrays.toString(message.getBytes()));System.out.println("解密后的信息字节数组:" + Arrays.toString(decodeByte));}public static byte[] encodeMessage(byte[] key, byte[] message) throws NoSuchAlgorithmException,NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException, BadPaddingException {// 1. 根据算法名称/工作模式/填充模式获取Cipher实例;Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");// 2. 根据算法名称初始化一个SecretKey实例,密钥必须是指定长度;SecretKey secretKey = new SecretKeySpec(key, "AES");// 3. 使用SerectKey初始化Cipher实例,并设置加密或解密模式;cipher.init(Cipher.ENCRYPT_MODE, secretKey);// 4. 传入明文或密文,获得密文或明文。return cipher.doFinal(message);}public static byte[] decodeMessage(byte[] key, byte[] encodeMessage) throws NoSuchAlgorithmException,NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException, BadPaddingException {// 创建密码对象,需要传入算法/工作模式/填充模式Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");// 根据key的字节内容,"恢复"秘钥对象SecretKey keySpec = new SecretKeySpec(key, "AES");// 初始化秘钥:设置解密模式DECRYPT_MODEcipher.init(Cipher.DECRYPT_MODE, keySpec);// 根据原始内容(字节),进行解密+cipher.update(encodeMessage);byte[] result = cipher.doFinal();return result;}}

public class Demo02 {public static void main(String[] args) throws Exception {// 原文:String message = "我本将心像明月";System.out.println("Message(原始信息): " + message);// 128位密钥 = 16 bytes Key:byte[] key = "1234567890abcdef".getBytes();// 加密:byte[] data = message.getBytes();byte[] encrypted = encrypt(key, data);System.out.println("Encrypted(加密内容): " + Base64.getEncoder().encodeToString(encrypted));// 解密:byte[] decrypted = decrypt(key, encrypted);System.out.println("Decrypted(解密内容): " + new String(decrypted));}// 加密:public static byte[] encrypt(byte[] key, byte[] input) throws GeneralSecurityException {// 创建密码对象,需要传入算法/工作模式/填充模式Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");// 根据key的字节内容,"恢复"秘钥对象SecretKey keySpec = new SecretKeySpec(key, "AES");// 初始化秘钥:设置加密模式ENCRYPT_MODEcipher.init(Cipher.ENCRYPT_MODE, keySpec);// 根据原始内容(字节),进行加密return cipher.doFinal(input);}// 解密:public static byte[] decrypt(byte[] key, byte[] input) throws GeneralSecurityException {// 创建密码对象,需要传入算法/工作模式/填充模式Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");// 根据key的字节内容,"恢复"秘钥对象SecretKey keySpec = new SecretKeySpec(key, "AES");// 初始化秘钥:设置解密模式DECRYPT_MODEcipher.init(Cipher.DECRYPT_MODE, keySpec);// 根据原始内容(字节),进行解密return cipher.doFinal(input);}
}

Java标准库提供的对称加密接口非常简单,使用时按以下步骤编写代码:

  1. 根据算法名称/工作模式/填充模式获取Cipher实例;
  2. 根据算法名称初始化一个SecretKey实例,密钥必须是指定长度;
  3. 使用SerectKey初始化Cipher实例,并设置加密或解密模式;
  4. 传入明文或密文,获得密文或明文。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/22967.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙轻内核M核源码分析系列七 动态内存Dynamic Memory

内存管理模块管理系统的内存资源&#xff0c;它是操作系统的核心模块之一&#xff0c;主要包括内存的初始化、分配以及释放。 在系统运行过程中&#xff0c;内存管理模块通过对内存的申请/释放来管理用户和OS对内存的使用&#xff0c;使内存的利用率和使用效率达到最优&#x…

【C++小知识】为什么C语言不支持函数重载,而C++支持

为什么C语言不支持函数重载&#xff0c;而C支持 编译链接过程函数名修饰过程总结 在了解C函数重载前&#xff0c;如果对文件的编译与链接不太了解。可以看看我之前的一篇文章&#xff0c;链接: 文件的编译链接 想要清楚为什么C语言不支持函数重载而C支持&#xff0c;有俩个过程…

大模型Prompt-Tuning技术进阶

LLM的Prompt-Tuning主流方法 面向超大规模模型的Prompt-Tuning 近两年来&#xff0c;随之Prompt-Tuning技术的发展&#xff0c;有诸多工作发现&#xff0c;对于超过10亿参数量的模型来说&#xff0c;Prompt-Tuning所带来的增益远远高于标准的Fine-tuning&#xff0c;小样本甚至…

【保姆级讲解Outlook邮箱的使用技巧】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

Java基础27,28(多线程,ThreadMethod ,线程安全问题,线程状态,线程池)

目录 一、多线程 1. 概述 2. 进程与线程 2.1 程序 2.2 进程 2.3 线程 2.4 进程与线程的区别 3. 线程基本概念 4.并发与并行 5. 线程的创建方式 方式一&#xff1a;继承Thread类 方式二&#xff1a;实现Runable接口 方式三&#xff1a;实现Callable接口 方式四&…

安徽某高校数据挖掘作业6

1 根据附件中year文件&#xff0c;编辑Python程序绘制年销售总额分布条形图和年净利润分布条形图&#xff0c;附Python程序和图像。 2 根据附件中quarter和quarter_b文件&#xff0c;编辑Python程序绘制2018—2020年销售额和净利润折线图&#xff0c;附Python程序和图像。 3 …

2025QS世界大学排行榜最新完整版

北京时间6月5日凌晨4点&#xff0c;QS官网发布了备受瞩目的2025年世界大学排名&#xff0c;本次排名共涵盖了1500所顶尖院校&#xff0c;让人们期待已久的排名榜单一览无遗&#xff0c;展现了全球高等教育的新格局。根据上大学网&#xff08;www.sdaxue.com&#xff09;统计&am…

HarmonyOS(二十三)——HTTP请求实战一个新闻列表

在前一篇文章&#xff0c;我们已经知道如何实现一个http请求的完整流程&#xff0c;今天就用官方列子实战一个简单的新闻列表。进一步掌握ArkTS的声明式开发范式&#xff0c;数据请求&#xff0c;常用系统组件以及touch事件的使用。 主要包含以下功能&#xff1a; 数据请求。…

1103. 分糖果 II Rust等差求和+一元二次方程求根(击败100% Rust用户)

题目内容 排排坐&#xff0c;分糖果。 我们买了一些糖果 candies&#xff0c;打算把它们分给排好队的 n num_people 个小朋友。 给第一个小朋友 1 颗糖果&#xff0c;第二个小朋友 2 颗&#xff0c;依此类推&#xff0c;直到给最后一个小朋友 n 颗糖果。 然后&#xff0c;…

C语言中指针的说明

什么是指针&#xff1f; 在C语言当中&#xff0c;我们可以将指针理解为内存当中存储的地址&#xff0c;就像生活当中&#xff0c;一个小区里面&#xff0c;在小区里面有很单元&#xff0c;每一栋单元&#xff0c;单元内的房间有着不同的房间号&#xff0c;我们可以同过几栋几单…

Docker 进入指定容器内部(以Mysql为例)

文章目录 一、启动容器二、查看容器是否启动三、进入容器内部 一、启动容器 这个就不多说了 直接docker run… 二、查看容器是否启动 查看正在运行的容器 docker ps查看所有的容器 docker ps -a结果如下图所示&#xff1a; 三、进入容器内部 通过CONTAINER ID进入到容器…

FFA-Net:用于单图像去雾的特征融合注意力网络

摘要 论文链接&#xff1a;https://arxiv.org/pdf/1911.07559v2 在这篇论文中&#xff0c;我们提出了一种端到端的特征融合注意力网络&#xff08;FFA-Net&#xff09;来直接恢复无雾图像。FFA-Net架构由三个关键组件组成&#xff1a; 一种新颖的特征注意力&#xff08;FA&…

C语言笔记第10篇:内存函数

上一篇的字符串函数只是针对字符串的函数&#xff0c;而内存函数是针对内存块的&#xff0c;不在乎内存中存储的数据&#xff01;这就是字符串函数和内存函数的区别。 准备好爆米花&#xff0c;正片开始 1、memcpy的使用和模拟实现 memcpy库函数的功能&#xff1a;任意类型数…

Element ui图片上传

前言 对于广大小白来说&#xff0c;图片上传简直是上传难&#xff0c;难于上青天&#xff01;废话不多说&#xff0c;步入正题&#xff0c;您就瞧好吧&#xff01; 步骤一&#xff1a;前端使用element ui组件&#xff08;upload上传&#xff09; 我个人喜欢使用第二个组件&a…

ingress规则

一 k8s 对外服务之 Ingress LB ingress 1 Ingress 简介 service的作用体现在两个方面 ? ① 对集群内部&#xff0c;它不断跟踪pod的变化&#xff0c;更新endpoint中对应pod的对象&#xff0c;提供了ip不断变化的pod的服务发现机制&#xff1b; ② 对集群外部&#xff0c…

Docker部署青龙面板

青龙面板 文章目录 青龙面板介绍资源列表基础环境一、安装Docker二、安装Docker-Compose三、安装青龙面板3.1、拉取青龙&#xff08;whyour/qinglong&#xff09;镜像3.2、编写docker-compose文件3.3、检查语法启动容器 四、访问青龙面板五、映射本地部署的青龙面板至公网5.1、…

Day06 创建首页ListBox列表数据

​ 完成当前章节后,最终效果图如下 ​​​​ 一.首页汇总方块鼠标悬停阴影效果设计 首先,在上一章节首页设计 的时候,就已经知道当前主界面的汇总方块是使用 Border 来实现的,那么想要实现鼠标悬停时设置阴影的效果,就要在 Border 中进行重写样式。 需要使用 触发器 来实…

【动手学深度学习】卷积神经网络CNN的研究详情

目录 &#x1f30a;1. 研究目的 &#x1f30a;2. 研究准备 &#x1f30a;3. 研究内容 &#x1f30d;3.1 卷积神经网络 &#x1f30d;3.2 练习 &#x1f30a;4. 研究体会 &#x1f30a;1. 研究目的 特征提取和模式识别&#xff1a;CNN 在计算机视觉领域被广泛用于提取图像…

Locality-aware subgraphs for inductive link prediction in knowledge graphs

Locality-aware subgraphs for inductive link prediction in knowledge graphs a b s t r a c t 最近的知识图&#xff08;KG&#xff09;归纳推理方法将链接预测问题转化为图分类任务。 他们首先根据目标实体的 k 跳邻域提取每个目标链接周围的子图&#xff0c;使用图神经网…

Spark SQL - 操作数据帧

本教程将通过一个具体的案例来演示如何在Spark SQL中操作数据帧。我们将从获取学生数据帧开始&#xff0c;包括两种方法&#xff1a;一是由数据集转换而来&#xff0c;二是直接读取文件生成数据帧。然后&#xff0c;我们将对数据帧进行各种操作&#xff0c;如投影、过滤、统计和…