嵌入式 Linux LED 驱动开发实验学习

I.MX6U-ALPHA 开发板上的 LED 连接到 I.MX6ULL 的 GPIO1_IO03 这个引脚上,进行这个驱动开发实验之前,需要了解下地址映射。

地址映射

MMU 全称叫做 MemoryManage Unit,也就是内存管理单元。在老版本的 Linux 中要求处理器必须有 MMU,但是现在
Linux 内核已经支持无 MMU 的处理器了。 MMU 主要完成的功能如下:
①、完成虚拟空间到物理空间的映射。
②、内存保护,设置存储器的访问权限,设置虚拟存储空间的缓冲特性。
虚拟空间到物理空间的映射,也叫做地址映射。首先了解两个地址概念:虚拟地址(VA,Virtual Address)、物理地址(PA, Physcical Address)。对于 32 位的处理器来说,虚拟地址范围是 2^32=4GB,我们的开发板上有 512MB 的 DDR3,这 512MB 的内存就是物理内存,经过 MMU 可以将其映射到整个 4GB 的虚拟空间。

在这里插入图片描述

由于512MB是比4GB空间是要小的,所以会有那么肯定存在多个虚拟地址映射到同一个物理地址上去,linux 内核启动的时候会初始化 MMU,设置好内存映射,设置好以后 CPU 访问的都是虚拟 地 址 。 比 如 I.MX6ULL 的 GPIO1_IO03 引 脚 的 复 用 寄 存 器IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 的地址为 0X020E0068。如果没有开启 MMU 的话直接向 0X020E0068 这个寄存器地址写入数据就可以配置 GPIO1_IO03 的复用功能。现在开启了 MMU,并且设置了内存映射,因此就不能直接向 0X020E0068 这个地址写入数据了。要得到 0X020E0068 这个物理地址在 Linux 系统里面对应的虚拟地址,这里就涉及到了物理内存和虚拟内存之间的转换。下面介绍下使用的函数:

1、 ioremap 函数

ioremap 函 数 用 于 获 取 指 定 物 理 地 址 空 间 对 应 的 虚 拟 地 址 空 间 , 定 义 在arch/arm/include/asm/io.h 文件中,定义如下:

示例代码 41.1.1.1 ioremap 函数
1 #define ioremap(cookie,size) __arm_ioremap((cookie), (size),MT_DEVICE)
2 3
void __iomem * __arm_ioremap(phys_addr_t phys_addr, size_t size,unsigned int mtype)
4 {
5 return arch_ioremap_caller(phys_addr, size, mtype,__builtin_return_address(0));
6 }

ioremap 是个宏,有两个参数: cookie 和 size,真正起作用的是函数__arm_ioremap,此函数有三个参数和一个返回值,这些参数和返回值的含义如下:

phys_addr:要映射的物理起始地址。
size:要映射的内存空间大小。
mtype: ioremap 的类型,可以选择 MT_DEVICE、 MT_DEVICE_NONSHARED、
MT_DEVICE_CACHED 和 MT_DEVICE_WC, ioremap 函数选择 MT_DEVICE。
返回值: __iomem 类型的指针,指向映射后的虚拟空间首地址。

假如我们要获取 I.MX6ULL 的 IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 寄存器对应的虚拟地址,使用如下代码即可:

#define SW_MUX_GPIO1_IO03_BASE (0X020E0068)
static void __iomem* SW_MUX_GPIO1_IO03;
SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);

SW_MUX_GPIO1_IO03_BASE 是寄存器物理地址, SW_MUX_GPIO1_IO03 是映射后的虚拟地址。对于 I.MX6ULL 来说一个寄存器是 4 字节(32 位)的,因此映射的内存长度为 4。映射完成以后直接对 SW_MUX_GPIO1_IO03 进行读写操作即可。

2、 iounmap 函数

卸载驱动的时候需要使用 iounmap 函数释放掉 ioremap 函数所做的映射, iounmap 函数原型如下:

示例代码 41.1.1.2 iounmap 函数原型
void iounmap (volatile void __iomem *addr)

iounmap 只有一个参数 addr,此参数就是要取消映射的虚拟地址空间首地址。假如我们现在要取消掉IOMUXC_SW_MUX_CTL_PAD
_GPIO1_IO03 寄存器的地址映射,使用如下代码即可:

iounmap(SW_MUX_GPIO1_IO03);

3:I/O 内存访问函数

I/O 端口和 I/O 内存。当外部寄存器或内存映射到 IO 空间时,称为 I/O 端口。当外部寄存器或内存映射到内存空间时,称为 I/O 内存。但是对于 ARM 来说没有 I/O 空间这个概念,因此 ARM 体系下只有 I/O 内存(可以直接理解为内存)。使用 ioremap 函数将寄存器的物理地址映射到虚拟地址以后,我们就可以直接通过指针访问这些地址。具体函数如下面所示:

1、读操作函数
示例代码 41.1.2.1 读操作函数
1 u8 readb(const volatile void __iomem *addr)
2 u16 readw(const volatile void __iomem *addr)
3 u32 readl(const volatile void __iomem *addr)

readb、 readw 和 readl 这三个函数分别对应 8bit、 16bit 和 32bit 读操作,参数 addr 就是要读取写内存地址,返回值就是读取到的数据。由于IMX6ULL是32位,所以采用readl

2、写操作函数
示例代码 41.1.2.2 写操作函数
1 void writeb(u8 value, volatile void __iomem *addr)
2 void writew(u16 value, volatile void __iomem *addr)
3 void writel(u32 value, volatile void __iomem *addr)

writeb、 writew 和 writel 这三个函数分别对应 8bit、 16bit 和 32bit 写操作,参数 value 是要写入的数值, addr 是要写入的地址。

LED 灯驱动程序编写

这里GPIO对应的寄存器物理地址以及映射后的寄存器虚拟地址指针要先写好,具体如下:

/* 寄存器物理地址 */
#define CCM_CCGR1_BASE (0X020C406C)
#define SW_MUX_GPIO1_IO03_BASE (0X020E0068)
#define SW_PAD_GPIO1_IO03_BASE (0X020E02F4)
#define GPIO1_DR_BASE (0X0209C000)
#define GPIO1_GDIR_BASE (0X0209C004)/* 映射后的寄存器虚拟地址指针 */
static void __iomem *IMX6U_CCM_CCGR1;
static void __iomem *SW_MUX_GPIO1_IO03;
static void __iomem *SW_PAD_GPIO1_IO03;
static void __iomem *GPIO1_DR;
static void __iomem *GPIO1_GDIR;

首先思考一下要驱动LED灯,其实就是相当于往这个设备去写数据,然后根据数据中的值去控制寄存器输出高低电平,所以先编写一个根据不同数值去改变LED亮灭,具体函数为:

void LED_Switches(u8 state)
{u32 retval = 0;if (state == LEDON){retval = readl(GPIO1_DR);retval &= ~(1 << 3);writel(retval, GPIO1_DR);}else if (state == LEDOFF){retval = readl(GPIO1_DR);retval |= (1 << 3);writel(retval, GPIO1_DR);}
}

上面的逻辑很简单,就是判断亮灯,就读取GPIO1_DR的值,并且赋值之后重新写入寄存器,这样就完成对这个IO口高低电平的控制。
接下来就定义所需要的open、read、write、release函数。其中write函数是重点。

/** @description : 打开设备* @param – inode : 传递给驱动的 inode* @param - filp : 设备文件, file 结构体有个叫做 private_data 的成员变量* 一般在 open 的时候将 private_data 指向设备结构体。* @return : 0 成功;其他 失败*/
static int ledopen(struct inode *inode, struct file *filp)
{return 0;
}
/** @description : 从设备读取数据* @param - filp : 要打开的设备文件(文件描述符)* @param - buf : 返回给用户空间的数据缓冲区* @param - cnt : 要读取的数据长度* @param - offt : 相对于文件首地址的偏移* @return : 读取的字节数,如果为负值,表示读取失败*/
static int ledread(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{return 0;
}
/** @description : 向设备写数据* @param - filp : 设备文件,表示打开的文件描述符* @param - buf : 要写给设备写入的数据* @param - cnt : 要写入的数据长度* @param - offt : 相对于文件首地址的偏移* @return : 写入的字节数,如果为负值,表示写入失败*/
static ssize_t ledwrite(struct file *filp, char __user *buf, size_t cnt, loff_t off_t)
{int retvalue = 0;unsigned char databuf[1];u8 ledstat;retvalue = copy_from_user(databuf, buf, cnt);if (retvalue < 0){printk("kernel write failed!\r\n");return -EFAULT;}ledstat = databuf[0];if (ledstat == LEDON){LED_Switches(LEDON);}else if (ledstat == LEDOFF){LED_Switches(LEDOFF);}return 0;
}
/** @description : 关闭/释放设备* @param – filp : 要关闭的设备文件(文件描述符)* @return : 0 成功;其他 失败*/
static int led_release(struct inode *inode, struct file *filp)
{return 0;
}

wirte函数也就是对设备写入数据。定义一个databuf的数组接收用户组来的数据。因为是从用户区到系统内核,所以调用copy_from_user函数。得到写入的数据后根据这个数据匹配是开灯还是关灯指令。进一步调用上面定义的函数。
接下来就是设备初始化以及设备退出函数的编写。如下所示:

static int __init led_init(void)
{int retvalue = 0;u32 val = 0;/* 初始化 LED *//* 1、寄存器地址映射 */IMX6U_CCM_CCGR1 = ioremap(CCM_CCGR1_BASE, 4);SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);SW_PAD_GPIO1_IO03 = ioremap(SW_PAD_GPIO1_IO03_BASE, 4);GPIO1_DR = ioremap(GPIO1_DR_BASE, 4);GPIO1_GDIR = ioremap(GPIO1_GDIR_BASE, 4);/* 2、使能 GPIO1 时钟 */val = readl(IMX6U_CCM_CCGR1);val &= ~(3 << 26); /* 清除以前的设置 */val |= (3 << 26);  /* 设置新值 */writel(val, IMX6U_CCM_CCGR1);/* 3、设置 GPIO1_IO03 的复用功能,将其复用为* GPIO1_IO03,最后设置 IO 属性。*/writel(5, SW_MUX_GPIO1_IO03);/* 寄存器 SW_PAD_GPIO1_IO03 设置 IO 属性 */writel(0x10B0, SW_PAD_GPIO1_IO03);/* 4、设置 GPIO1_IO03 为输出功能 */val = readl(GPIO1_GDIR);val &= ~(1 << 3); /* 清除以前的设置 */val |= (1 << 3);  /* 设置为输出 */writel(val, GPIO1_GDIR);/* 5、默认关闭 LED */val = readl(GPIO1_DR);val |= (1 << 3);writel(val, GPIO1_DR);/* 6、注册字符设备驱动 */retvalue = register_chrdev(LED_MAJOR, LED_NAME, &led_fops);if (retvalue < 0){printk("register chrdev failed!\r\n");return -EIO;}return 0;
}
static void __exit led_exit(void)
{/* 取消映射 */iounmap(IMX6U_CCM_CCGR1);iounmap(SW_MUX_GPIO1_IO03);iounmap(SW_PAD_GPIO1_IO03);iounmap(GPIO1_DR);iounmap(GPIO1_GDIR);/* 注销字符设备驱动 */unregister_chrdev(LED_MAJOR, LED_NAME);
}
module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("wyw");

编写测试 APP

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"#define LEDON 1
#define LEDOFF 0
/*
24 * @description : main 主程序
25 * @param - argc : argv 数组元素个数
26 * @param - argv : 具体参数
27 * @return : 0 成功;其他 失败
28 */
int main(int argc, char *argv[])
{int fd, retvalue;char *filename;unsigned databuf[1];if (argc != 3){printf("Error:Usage!\r\n");return -1;}filename = argv[1];fd = open(filename, O_RDWR);if (fd < 0){printf("Can't open file %s\r\n", filename);return -1;}databuf[0] = atoi(argv[2]);retvalue = write(fd, databuf,sizeof(databuf));if (retvalue < 0){printf("LED Control Failed!\r\n");close(fd);return -1;}/* 关闭设备 */retvalue = close(fd);if (retvalue < 0){printf("Can't close file %s\r\n", filename);return -1;}return 0;
}

上面这部分程序对于上一节的内容来说,稍微改一下就可以。由于我们输入的测试命令为:

./ledApp /dev/led 1 %测试app/申请的设别节点/数值

所以定义一个数组来存放命令中第三个参数也就是开关灯对应的数值,然后调用write函数写入设备。即可完成点灯。编译以及测试步骤参考上一节内容

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/22898.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

dvwa靶场的下载、配置

目录 下载 配置 连接数据库 搭建网站&#xff08;可选&#xff09; 配置靶场 下载 百度网盘链接&#xff1a;https://pan.baidu.com/s/1oK2UzKFxIIPQkhz6hD8WFQ?pwdpbb2 提取码&#xff1a;pbb2 迅雷链接&#xff1a;https://pan.xunlei.com/s/VNzHo9gXgbsk5E8tcx6Yek…

练习实践-linux启动耗时分析

练习实践-启动耗时整体概览&#xff0c;具体服务的启动细节 参考来源&#xff1a; B站up主林哥讲运维&#xff1a;一分钟学会&#xff1a;可视化查看系统启动时的性能 如何使用Linux命令查看系统的启动进程&#xff08;linux查看启动进程&#xff09; 解决ubuntu开机变慢&…

双指针法 ( 三数之和 )

题目 &#xff1a;给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复…

代理IP类型有哪些?定义与区别

您应该对代理有了一定的了解。但是&#xff0c;代理服务器也有不同的类型。就其来源而言&#xff0c;最常见的代理服务器类型是住宅代理和数据中心代理&#xff1a; 1、住宅代理 住宅代理是 ISP 向房主提供的 IP 地址。它是与物理位置关联的真实 IP 地址&#xff0c;因此允许…

WPF中Window的外观实现及常用属性

文章目录 1. 概要2. Window的外观2.1 Window的外观组成2.2 Window的实现2.3 Window外观配置2.4 Window 的其他常用属性1. AllowsTransparency 2. WindowStartupLocation3. ShowInTaskbar4. ShowActivated5. SizeToContent6. Topmost7. WindowStyle 1. 概要 和 Android 类似, W…

小米SU7智能座舱介绍,果然有亮点!

2024 年,小米 SU7 横空出世,从开始的怀疑到发布后仅 24h 就达到了 8W 台的订单量,火到出圈的具象化。智能手机厂家造车,之前的华为做了榜样,小米作为汽车制造中又一条鲶鱼,能否给智能汽车市场带来新的契机? 小米造车可谓是各方位进行全新打造,包括座舱、底盘、智驾、车…

sentaurus节点重排

sentaurus使用时&#xff0c;有时候节点顺序会比较乱&#xff0c;为了方便更好的查看&#xff0c;可以对其进行重新编排&#xff0c;操作方法如下&#xff0c;右键——project——clean up 然后选中chean up 选项中的renumber the Tree&#xff0c;然后点击cleanup操作完成即可…

数据结构:模拟栈

数据结构&#xff1a;模拟栈 题目描述参考代码 题目描述 输入样例 10 push 5 query push 6 pop query pop empty push 4 query empty输出样例 5 5 YES 4 NO参考代码 #include <iostream>using namespace std;const int N 1000010;int m, x; int q[N]; string op; int…

ESP32S3——多线程

一、环境&#xff1a; 平台&#xff1a;arduino IDE 或 VS Code PlatformIO 皆可。 我的是后者&#xff0c;具体为&#xff1a; 框架&#xff1a;VS PlatformIO Arduino 二、硬件准备&#xff1a; 一个esp32s3 本文用到的是U0RXD&#xff08;GPIO44 &#xff09;与U0TXD…

TCP的核心属性

TCP的核心属性 一: TCP的核心属性1.1: 确认应答:1.2 : 超时重传1.3 : 连接管理1.3.1 三次握手1.3.2 四次挥手 1.4 滑动窗口1.5: 流量控制:1.6 拥塞控制1.7 延时应答1.8 :捎带应答1.9: 面向字节流1.10 : 异常情况 一: TCP的核心属性 1.1: 确认应答: 保证可靠性最核心的机制 1…

《web应用技术》第十次作业

将自己的项目改造为基于vue-cli脚手架的项目&#xff0c;页面有导航&#xff0c;学会使用router。 <el-aside width"200px" style"background-color: aliceblue;"> <el-menu :default-openeds"[1]" style"background-color:rgb(1…

springboot 打成jar部署到Linux环境后读取resources下面的文件

方法代码&#xff1a; ClassLoader loader Thread.currentThread().getContextClassLoader();InputStream flagInputStream loader.getResourceAsStream("static/imagesLogo/imageaaa.png");BufferedImage read;read ImageIO.read(flagInputStream);System.out.pr…

智慧农业灌溉系统的主要工作原理

一、概述   智慧农业灌溉系统是一种基于传感器技术和智能控制技术的灌溉系统。它能够根据土壤湿度、气象条件、作物需水量等多种因素&#xff0c;自动控制灌溉水量和灌溉时间&#xff0c;实现精准灌溉。相比传统的手动灌溉和定时灌溉&#xff0c;智慧农业灌溉系统更加高效、准…

QT error: allocation of incomplete type ‘Ui::Server‘

目录 前言 报错内容&#xff1a; 过程解析&#xff1a; 原因分析&#xff1a; daisy.skye的博客 QT合集http://t.csdnimg.cn/wEVbu 前言 最近又开始需要做上位机了&#xff0c;要知道qt上位机对我来说已经3年没有接触了&#xff0c;最开始接触还是毕业时工作中的简单学习和…

pycharm专业版安装保姆级教程

一、官网下载 PyCharm下载地址&#xff1a;http://www.jetbrains.com/pycharm/download/#sectionwindows 选择专业版点击下载 二、进入安装向导 下载完成后&#xff0c;点击.exe文件 点击是 点击下一步 可修改安装目录为自己想安装的位置 或者不修改也可 点击下一步 选择所…

【k8s 控制器:ReplicaSet、Deployment、StatefulSet ...】

控制器 ReplicaSet、Deployment、StatefulSet 和 DaemonSet 都是 Kubernetes 中的控制器对象&#xff0c;用于管理 Pod 的创建、扩展、缩减和更新等操作。 一、Deployment 适用无状态服务应用部署&#xff1b;Deployment 是在 ReplicaSet 的基础上提供了更高级功能的控制器。它…

变量位置不同会死机?郭天祥老师视频的遗留问题分析答案

在郭天祥老师视频里有一个问题分享&#xff0c;是EXMC初始化里的一个变量定义和初始化位置不同会导致程序死机&#xff0c;最终定位到程序是进入hardfault死机&#xff0c;但暂时没有后续分析了&#xff0c;这里我们来继续分析一下。 死机的程序是这样的&#xff1a; 这段代码…

如何使用 Python 和 Selenium 解决 Cloudflare 验证码

你知道吗&#xff1f;大约 20% 你需要抓取的网站使用 Cloudflare&#xff0c;这是一个强大且不断崛起的反机器人保护系统&#xff0c;可以轻松击败你的努力。如果你正在为 Cloudflare 验证码失败而苦恼&#xff0c;你并不孤单。在每一秒都很重要的世界里&#xff0c;许多人因为…

Mysql的两种安装方式

文章目录 第一种安装方式国内镜像库下载解压安装配置环境变量初始化数据库安装mysql登录mysql设置root密码退出登录假如忘记了密码&#xff0c;重置密码的步骤1、步骤一&#xff1a;停止 MySQL 服务2、步骤二&#xff1a;使用安全模式启动 MySQL3、步骤三&#xff1a;重置密码4…

Linux 内核优化:提升性能测试效率的关键步骤

大家好&#xff0c;本文介绍了如何通过优化 Linux 内核配置来提高系统性能&#xff0c;特别是在进行性能测试时。从调整文件系统、网络参数到内核参数优化&#xff0c;我们将深入探讨每个关键步骤&#xff0c;以帮助你在性能测试中取得更好的效果。 在进行性能测试时&#xff0…