使用System-Verilog实现FPGA基于DE2-115开发板驱动HC_SR04超声波测距模块|集成蜂鸣器,led和vga提示功能

文章目录

  • 前言
  • 一、实验原理
    • 1.1 传感器概述:
    • 1.2 传感器引脚
    • 1.3 传感器工作原理
    • 1.4 整体测距原理及编写思路
  • 二、System-Verilog文件
    • 2.1 时钟分频
    • (1)clk_div.sv
    • 2.2 超声波测距
    • (1)hc_sr_trig.sv
    • (2)hc_sr_echo.sv
    • 2.3 数码管驱动
    • (1)seg_driver.sv
    • 2.4 VGA驱动
    • (1)vga_dirve.sv
  • 三、实现过程
    • 3.1 模块说明
    • 3.2 引脚分配
  • 三、演示视频
  • 总结
  • 参考


前言

环境

  1. 硬件 DE2-115 HC-SR04超声波传感器

  2. 软件 Quartus 18.1

目标结果

使用DE2-115开发板驱动HC-SR04模块,并将所测得数据显示到开发板上的数码管。

模拟倒车雷达,集成蜂鸣器,led和vga提示功能

  1. 蜂鸣器提示小于20cm1s一响小于10cm0.5s一响
  2. LED提示小于20cm全亮提示
  3. VGA提示小于20cm ,显示 警告warning 图片

小tips:
VSCODE插件安装一波
在这里插入图片描述


一、实验原理

1.1 传感器概述:

HC-SR04超声波距离传感器的核心是两个超声波传感器。一个用作发射器,将电信号转换为40 KHz超声波脉冲。接收器监听发射的脉冲。如果接收到它们,它将产生一个输出脉冲,其宽度可用于确定脉冲传播的距离。就是如此简单!该传感器体积小,易于在任何机器人项目中使用,并提供2厘米至400厘米(约1英寸至13英尺)之间出色的非接触范围检测,精度为3mm。

在这里插入图片描述

1.2 传感器引脚

在这里插入图片描述

  • VCC 是HC-SR04超声波距离传感器的电源

  • Trig 引脚用于触发超声波脉冲

  • Echo 回声当接收到反射信号时,引脚产生一个脉冲。脉冲的长度与检测发射信号所需的时间成正比

  • GND 用于接地

1.3 传感器工作原理

当持续时间至少为10 µS(10微秒)的脉冲施加到触发引脚时,一切就开始了。响应于此,传感器以40 KHz发射八个脉冲的声音脉冲。这种8脉冲模式使设备的“超声特征”变得独一无二,从而使接收器能够将发射模式与环境超声噪声区分开。八个超声波脉冲通过空气传播,远离发射器。同时,回声引脚变为高电平,开始形成回声信号的开始。如果这些脉冲没有被反射回来,则回波信号将在38毫秒后超时并返回低电平。因此38 ms的脉冲表示在传感器范围内没有阻塞。
在这里插入图片描述如果这些脉冲被反射回去,则在收到信号后,Echo引脚就会变低。这会产生一个脉冲,其宽度在150 µS至25 mS之间变化,具体取决于接收信号所花费时间。

在这里插入图片描述

HC-SR04的时序图如下:
在这里插入图片描述

通过时序图我们可以知道,我们给HC-SR04发送长达 10us 的TTL脉冲,然后模块就会进行测距,测距的结果通过回响信号传达,回响的TTL电平信号时间即是超声波从HC-SR04模块发出,触碰到障碍物后返回到HC-SR04模块的时间总和。

TTL是逻辑电平标准,当电压达到2.4V-5V之间,那么为逻辑1(高电平),电压在0V~0.4V之间,那么为逻辑0(低电平)。所以我们可以直接通过GPIO口来输出以及输入时序所需的电平信号。

然后,将接收到的脉冲的宽度用于计算到反射物体的距离。这可以通过我们在初中学到的简单的距离-速度-时间方程来解决。

距离=速度x时间 ,当然温度,以及环境噪声等对实验结果都有影响,因此公式应在不同环境下进行修改

总所周知,声音的速度为340m/s,因此我们将回响电平的时间除340再除2之后得到的就是单位为米的测距结果。

1.4 整体测距原理及编写思路

在这里插入图片描述
编写思路:

以上时序图表明我们只需要提供一个10uS以上脉冲触发信号,该模块内部将发出8个40kHz周期电平并检测回波。一旦检测到有回波信号则输出回响信号。
回响信号的脉冲宽度与所测的距离成正比。此通过发射信号到收到的回响信号时间间隔可以计算得到距离。公式:uS/58=厘米或者uS/148=英寸;或是:距离=高电平时间*声速(340M/S)/2:建议测量周期为60ms以上,以防止发射信号对回响信号的影响。

结合说明书我们可以知道,我们仅需提供10us的高电平给Trig口即可。然后HC-SR04在测量完毕之后会将结果通过Echo回响回来。

所以我们只需要将Trig口拉高,等待10us(最好再延长一些,代码中用的是15us)后再拉低即可。

接着就只需要等待Echo将数据传输回来,通过时序图我们可以得知回响信号是拉高Echo口,再拉低,中间持续的时间就是测距的结果。

所以我们给Echo口配置一个中断事件,设置为上跳变下跳变都触发,另外再用一个变量记录Echo口到底是拉高还是拉低即可。

如果是拉高,那么我们需要记录下持续的时间,这时候我们需要用定时器计时,所以需要在一开始的时候就配置好定时器的初始化。唯一的问题就是该如何配置定时器的预分频器和自动重装器了。

根据说明书我们可以知道HC-SR04的精度为3mm,而测距的公式为 us/58-cm,稍加计算可知,如果我们需要测量3mm,那么得到的时间为17.4us,以此为一个刻度,那么定时器的频率应该为57471Hz。然而这样太麻烦了,而且也不好用,因此我们可以随意一些,我在代码中使用的是预分频器为72,自动重装器为100,那么得到的频率为72MHz/72/100=1000Hz,也就是一次定时器中断的时间为100us,而自动重装器里的每一个值就是1us,所以每次外部中断的下降沿触发之后只需要将定时器触发的次数*100再加上自动重装器里的值就可以得到回响信号的持续时间了,单位是us。

二、System-Verilog文件

2.1 时钟分频

(1)clk_div.sv

定义时钟分频模块,产生周期为1us的时钟信号
clk_div.sv

// //产生一个以微秒为周期的时钟信号clk_us,该信号可用于驱动一些需要精确时间控制的电路
module clk_div(input logic Clk,           // 输入系统时钟,50MHzinput logic Rst_n,         // 输入复位信号,低电平有效output logic clk_us        // 输出微秒级时钟信号
);// 参数声明 1us = 1000ns = 50个时钟周期parameter int CNT_MAX = 19'd50;  //1us的计数值为 50 * Tclk(20ns)// 内部线网/寄存器声明logic [18:0] cnt;          // 定义一个19位的计数器logic add_cnt;             // 计数器使能信号logic end_cnt;             // 计数器结束信号,达到最大值时有效// 计数器的寄存器逻辑always_ff @(posedge Clk, negedge Rst_n) beginif (!Rst_n) begin       // 如果复位信号有效,则计数器清零cnt <= '0; endelse if (add_cnt) begin // 如果计数器达到最大值,则计数器重置if (end_cnt) begincnt <= '0; endelse begin          // 否则计数器继续计数cnt <= cnt + 1'b1; endendelse begincnt <= cnt;         // 如果计数器未使能,则保持当前值endend// 赋值计数器使能信号,始终使计数器有效assign add_cnt = 1'b1; // 赋值计数器结束信号,当计数器使能并且计数值达到CNT_MAX - 1时有效assign end_cnt = add_cnt && cnt >= CNT_MAX - 19'd1;// 赋值输出时钟信号,当计数器达到最大值时输出一个脉冲assign clk_us = end_cnt;endmodule

2.2 超声波测距

  • 实现HC-SR04超声波传感器的触发模块,用于生成触发测距信号(trig)
  • 定义HC-SR04超声波传感器的回声模块,用于测量距离并输出检测距离数据(data_o)

(1)hc_sr_trig.sv

hc_sr_trig.sv:

// hc_sr_trig 模块定义开始,用于生成超声波触发信号
//   Description  ﹕超声波触发测距模块
// 波形周期 300ms,前 15us 高电平
module hc_sr_trig (input logic clk_us,    // 输入 1MHz 系统时钟input logic Rst_n,     // 输入复位信号,低电平有效output logic trig      // 输出触发测距信号
);// 参数声明 300_000*1_000ns = 3 *10^8ns = 0.3s = 300ms// 波形周期 300ms,前 10us 高电平// 建议测量周期为 60ms 以上,以防止发射信号对回响信号的影响。parameter int CYCLE_MAX = 19'd300_000; // 定义触发信号的一个周期计数,基于 1MHz 时钟// 内部线网/寄存器声明logic [18:0] cnt;       // 计数器,用于生成触发信号的时间控制logic add_cnt;          // 计数器使能信号logic end_cnt;          // 计数器结束信号,达到预定义周期时有效// 计数器逻辑,用于控制触发信号的产生always_ff @(posedge clk_us, negedge Rst_n) beginif (!Rst_n) begin    // 如果复位信号有效,则计数器清零cnt <= '0;end else if (add_cnt) begin  // 如果计数器使能if (end_cnt) begin       // 如果计数器达到预定义的最大周期cnt <= '0;           // 计数器重置end else begincnt <= cnt + 1'b1;   // 否则计数器递增endend else begincnt <= cnt;              // 如果计数器未使能,则保持当前值endendassign add_cnt = 1'b1;           // 赋值计数器使能信号,始终使计数器有效assign end_cnt = add_cnt && (cnt == CYCLE_MAX - 9'd1); // 赋值计数器结束信号,当计数器值达到 CYCLE_MAX - 1 时有效// 赋值触发信号,当计数器值小于 15 时,输出高电平,作为触发// cnt < 15 置为高电平,表示前 15us 为高电平,作为触发信号// 此逻辑基于 HC-SR04 模块的触发信号需求,通常为 10 微秒的高电平assign trig = (cnt < 15) ? 1'b1 : 1'b0;/*计数器 cnt 用于生成持续一定时间的触发信号 trig。当计数器小于 15 时,trig 为高电平,表示触发信号是活跃的。计数器在每个 1MHz 时钟的上升沿递增,当计数器达到设定的最大周期 CYCLE_MAX 时,计数器重置,重新开始计数。这样,trig 信号就会周期性地输出高电平脉冲,以满足 HC-SR04 超声波传感器的触发需求。*/endmodule

(2)hc_sr_echo.sv

hc_sr_echo.sv

// 处理HC-SR04超声波传感器的回声信号,并计算距离
//   Description  ﹕超声波检测距离模块
// 本模块理论测试距离 2cm~510cm
// 输出结果保留两位小数
module hc_sr_echo
(input logic Clk,        // 输入50MHz时钟信号input logic clk_us,     // 输入1MHz系统时钟信号input logic Rst_n,      // 输入复位信号,低电平有效input logic echo,       // 输入超声波回声信号output logic [18:0] data_o  // 输出检测到的距离,以厘米为单位,保留三位小数
);/* 		S(um) = 17 * t 		-->  x.abc cm	*/
//Parameter Declarationsparameter T_MAX = 16'd60_000; // 定义计数器的最大值,对应510厘米logic r1_echo, r2_echo;  // 用于边沿检测的寄存器logic echo_pos, echo_neg;  // 回声信号的上升沿和下降logic [15:0] cnt;  // 1MHz时钟下的计数器,用于测量回声脉冲宽度logic add_cnt;  // 计数器使能信号logic end_cnt;  // 计数器结束信号logic [18:0] data_r;  // 距离数据的中间寄存器// 逻辑描述// 使用50MHz时钟检测回声信号的边沿,以避免使用1MHz时钟导致的2us延时always_ff @(posedge Clk or negedge Rst_n) beginif (!Rst_n) beginr1_echo <= 1'b0;r2_echo <= 1'b0;endelse beginr1_echo <= echo;r2_echo <= r1_echo;endend// 产生上升沿和下降沿信号assign echo_pos = r1_echo & ~r2_echo;  // 回声信号上升沿assign echo_neg = ~r1_echo & r2_echo;  // 回声信号下降沿// 计数器逻辑,用于测量回声脉冲宽度always_ff @(posedge clk_us or negedge Rst_n) beginif (!Rst_n) begincnt <= '0; endelse if (add_cnt) beginif (end_cnt) begincnt <= cnt;  // 如果达到最大测量范围,则保持当前计数值endelse begincnt <= cnt + 1'b1; // 否则计数器递增endendelse begin  // 如果回声信号低电平,计数器归零cnt <= '0;endendassign add_cnt = echo; // 赋值计数器使能信号,当回声信号为高电平时使能计数器assign end_cnt = add_cnt && cnt >= T_MAX - 1; //赋值计数器结束信号,当计数器达到最大值T_MAX时有效 超出最大测量范围则保持不变,极限// 测试距离=(高电平时间*声速(340M/S))/2;// 距离数据处理逻辑,将计数值转换为距离always_ff @(posedge Clk or negedge Rst_n) beginif (!Rst_n) begindata_r <= 'd2;  // 复位时中间寄存器置为2,用于小数点后三位的计算endelse if (echo_neg) begin// 当回声信号下降沿到来时,将计数值左移四位并加上自身,实现小数点后三位的计算//t = cnt*1000ns = cnt*10-6s//s = 340*t mdata_r <= (cnt << 4) + cnt;endelse begindata_r <= data_r;  // 否则保持当前值endend// 将中间寄存器的数据右移一位,实现除以2的操作,得到最终的距离数据assign data_o = data_r >> 1;endmodule

2.3 数码管驱动

查看平台手册,发现DE2-115开发板不涉及位选信号,每个段选信号都有一个单独的引脚。在这里插入图片描述
数码管驱动器模块代码如下,用于将输入的数据(data_o)转换为对应的数码管显示:

(1)seg_driver.sv

seg_driver:


// seg_driver模块用于驱动七段显示器,显示数字或特定的符号。
module seg_driver(input   logic       Clk,     // 输入的时钟信号。input   logic       Rst_n,   // 低电平有效的复位信号。input   logic [18:0] data_o, // 输入的数字数据,这里假设是测得的距离数据。output  logic [6:0]  hex1,   // 第1个七段显示器的段选信号输出。output  logic [6:0]  hex2,   // 第2个...output  logic [6:0]  hex3,output  logic [6:0]  hex4,output  logic [6:0]  hex5,output  logic [6:0]  hex6,output  logic [6:0]  hex7,output  logic [6:0]  hex8     
);// 参数定义区,定义了特殊显示值和小数点的编码,以及计数器的最大值。
parameter NOTION  = 4'd10,  // 定义数字"10"用于消隐的编码。FUSHU   = 4'd11,  // 定义数字"11"用作小数点的编码。MAX20us = 10'd1000; // 定义20微秒计数器的最大值。// 寄存器声明区,声明了用于控制和显示数字的内部寄存器。
logic [9:0]   cnt_20us;  // 用于动态扫描定时的20微秒计数器。
logic [7:0]   sel_r;     // 动态扫描控制的片选信号寄存器。
logic [3:0]   number;    // 要显示的数字,范围0-9或特殊编码。
logic [6:0]   seg_r;     // 根据number解析得到的七段显示器段选编码。// 每个七段显示器的段选编码寄存器,用于存储最终输出到显示器的段选编码。
logic [6:0]   hex1_r,   hex2_r,   hex3_r,   hex4_r,   hex5_r,   hex6_r,   hex7_r,   hex8_r;// 20微秒计数器始终块,用于周期性地重置计数器来实现动态扫描。
always_ff @(posedge Clk or negedge Rst_n) beginif (!Rst_n) begincnt_20us <= 0;  // 复位时计数器清零。endelse if (cnt_20us == (MAX20us - 1)) begincnt_20us <= 0;  // 计数器达到最大值时重置。endelse begincnt_20us <= cnt_20us + 1;  // 否则计数器递增。end
end// 动态扫描控制始终块,用于生成选择当前激活的七段显示器的片选信号。
always_ff @(posedge Clk or negedge Rst_n) beginif (!Rst_n) beginsel_r <= 8'b11_11_11_10;  // 复位时初始化片选信号。endelse if (cnt_20us == (MAX20us - 1)) beginsel_r <= {sel_r[6:0], sel_r[7]};  // 计数器达到最大值时,片选信号左移循环。endelse beginsel_r <= sel_r;  // 否则保持当前片选信号不变。end
end// 组合逻辑块,根据片选信号sel_r获取要显示的数字。
always_comb begincase (sel_r)// 根据sel_r的值选择对应的数字或特殊编码。// 这些编码对应于输入数据data_o的不同部分。// ...(此处省略了部分case语句)default: number = 4'd0;  // 默认情况下不显示任何数字。endcase
end// 组合逻辑块,根据数字解析出对应的七段显示器段选值seg_r。
always_comb begincase (number)// 对应数字0-9的七段显示器编码。// ...(此处省略了部分case语句)NOTION: seg_r = 7'b111_1111;  // 消隐编码,所有段都不亮。FUSHU: seg_r = 7'b011_1111;  // 小数点编码,只点亮小数点部分。default: seg_r = 7'b111_1111;  // 默认消隐。endcase
end// 组合逻辑块,根据片选信号sel_r将seg_r值赋给对应的七段显示器寄存器。
always_comb begin// 初始化所有寄存器为消隐状态。hex1_r = 7'b111_1111;hex2_r = 7'b111_1111;hex3_r = 7'b111_1111;hex4_r = 7'b111_1111;hex5_r = 7'b111_1111;hex6_r = 7'b111_1111;hex7_r = 7'b111_1111;hex8_r = 7'b111_1111;// 根据当前选中的显示器,将seg_r的值赋给对应的寄存器。case (sel_r)8'b11_11_11_10: hex1_r = seg_r;8'b11_11_11_01: hex2_r = seg_r;// ...(此处省略了部分case语句)default: ;endcase
end// 将寄存器的值通过assign语句输出到端口,连接到外部的七段显示器硬件。
assign  hex1 = hex1_r;
assign  hex2 = hex2_r;
assign  hex3 = hex3_r;
assign  hex4 = hex4_r;
assign  hex5 = hex5_r;
assign  hex6 = hex6_r;
assign  hex7 = hex7_r;
assign  hex8 = hex8_r;endmodule

2.4 VGA驱动

(1)vga_dirve.sv

vga_dirve.sv:

module vga_dirve (input logic clk,            // 系统时钟input logic rst_n,          // 复位input logic [23:0] rgb_data, // 16位RGB对应值output logic vga_clk,    // vga时钟 25Moutput logic h_sync,     // 行同步信号output logic v_sync,     // 场同步信号output logic [11:0] addr_h, // 行地址output logic [11:0] addr_v,  // 列地址output logic [7:0] rgb_r,  // 红基色output logic [7:0] rgb_g,  // 绿基色output logic [7:0] rgb_b  // 蓝基色
);// 640 * 480 60HZ
localparam int H_FRONT = 16; // 行同步前沿信号周期长
localparam int H_SYNC = 96;  // 行同步信号周期长
localparam int H_BLACK = 48; // 行同步后沿信号周期长
localparam int H_ACT = 640;   // 行显示周期长
localparam int V_FRONT = 11; // 场同步前沿信号周期长
localparam int V_SYNC = 2;   // 场同步信号周期长
localparam int V_BLACK = 31; // 场同步后沿信号周期长
localparam int V_ACT = 480;  // 场显示周期长// 800 * 600 72HZ (已注释,使用640*480)
// ...localparam int H_TOTAL = H_FRONT + H_SYNC + H_BLACK + H_ACT; // 行周期
localparam int V_TOTAL = V_FRONT + V_SYNC + V_BLACK + V_ACT; // 列周期logic [11:0] cnt_h; // 行计数器
logic [11:0] cnt_v; // 场计数器
logic [23:0] rgb;  // 对应显示颜色值// 对应计数器开始、结束、计数信号
logic flag_enable_cnt_h, flag_clear_cnt_h, flag_enable_cnt_v, flag_clear_cnt_v, flag_add_cnt_v, valid_area;// 25M时钟 行周期*场周期*刷新率 = 800 * 525* 60
logic clk_25;
// 50M时钟 1040 * 666 * 72
// ...// PLL实例化生成时钟
pll pll_inst (.areset(~rst_n),.inclk0(clk),.c0(clk_50), // 50M.c1(clk_25)  // 25M
);// 根据不同分配率选择不同频率时钟
assign vga_clk = clk_25;// 行计数
always_ff @(posedge vga_clk or negedge rst_n) beginif (!rst_n) begincnt_h <= 0;end else if (flag_enable_cnt_h) begincnt_h <= flag_clear_cnt_h ? 0 : cnt_h + 1;end
end// 行同步信号
always_ff @(posedge vga_clk or negedge rst_n) beginif (!rst_n) beginh_sync <= 0;end else if (cnt_h == H_SYNC - 1) beginh_sync <= 1;end else if (flag_clear_cnt_h) beginh_sync <= 0;end
end// 场计数
always_ff @(posedge vga_clk or negedge rst_n) beginif (!rst_n) begincnt_v <= 0;end else if (flag_enable_cnt_v) begincnt_v <= flag_clear_cnt_v ? 0 : cnt_v + flag_add_cnt_v;end
end// 场同步信号
always_ff @(posedge vga_clk or negedge rst_n) beginif (!rst_n) beginv_sync <= 0;end else if (cnt_v == V_SYNC - 1) beginv_sync <= 1;end else if (flag_clear_cnt_v) beginv_sync <= 0;end
end// 对应有效区域行地址 1-640
always_ff @(posedge vga_clk or negedge rst_n) beginif (!rst_n) beginaddr_h <= 0;end else if (valid_area) beginaddr_h <= cnt_h - H_SYNC - H_BLACK + 1;end
end// 对应有效区域列地址 1-480
always_ff @(posedge vga_clk or negedge rst_n) beginif (!rst_n) beginaddr_v <= 0;end else if (valid_area) beginaddr_v <= cnt_v - V_SYNC - V_BLACK + 1;end
end// 有效显示区域
assign valid_area = cnt_h >= H_SYNC + H_BLACK && cnt_h <= H_SYNC + H_BLACK + H_ACT &&cnt_v >= V_SYNC + V_BLACK && cnt_v <= V_SYNC + V_BLACK + V_ACT;// 显示颜色
always_ff @(posedge vga_clk or negedge rst_n) beginif (!rst_n) beginrgb <= 24'b0;end else if (valid_area) beginrgb <= rgb_data;end
endassign rgb_r = rgb[23:16];
assign rgb_g = rgb[15:8];
assign rgb_b = rgb[7:0];endmodule // vga_dirve

三、实现过程

3.1 模块说明

这里要求超声波模块的正负极分别接入5V和GND,其余trigger和echo自由接线,我这里使用的是GPIO[0]和GPIO[1]

在这里插入图片描述

3.2 引脚分配

首先这里提出引脚配置,其中trig和echo引脚与自己所接线的位置向同即可在这里插入图片描述

配置文件如下:
在这里插入图片描述
在这里插入图片描述

三、演示视频

使用System-Verilog实现FPGA基于DE2-115开发板驱动HC_SR04超声波测距模块|集成蜂鸣器,led和vga提示功能


总结

在本项目中,我成功实现了基于FPGA DE2-115开发板的HC-SR04超声波测距模块。通过使用SystemVerilog语言,我们设计并实现了时钟分频、超声波测距、数码管驱动以及VGA驱动等多个关键模块。这些模块协同工作,实现了超声波测距的基本功能,并将测量结果显示在数码管上,同时集成了蜂鸣器、LED和VGA提示功能,增强了用户体验。

关键实现点:

  1. 时钟分频模块 (clk_div.sv):生成周期为1us的时钟信号,为系统提供精确的时间控制。
  2. 超声波测距模块 (hc_sr_trig.sv 和 hc_sr_echo.sv):负责触发测距信号并处理回声信号,计算出距离。
  3. 数码管驱动模块 (seg_driver.sv):将测得的距离数据转换为数码管可以显示的格式。
  4. VGA驱动模块 (vga_dirve.sv):负责生成VGA信号,并在屏幕上显示警告图片,提供视觉反馈。

集成功能:

  1. 蜂鸣器提示小于20cm1s一响小于10cm0.5s一响
  2. LED提示小于20cm全亮提示
  3. VGA提示小于20cm ,显示 警告warning 图片

测试与验证:
通过在DE2-115开发板上的实际测试,我们验证了系统的测距功能和各种提示功能的准确性。展示了超声波测距模块的基本实现和扩展应用的可能性。

结论:
本项目不仅加深了对FPGA和SystemVerilog的理解,而且通过实际应用提高了解决实际问题的能力。虽然在实现过程中参考了前辈的代码,但能够补全并改进代码,对我来说是一次宝贵的学习和成长经历。期待在未来的项目中继续探索和创新。

参考

FPGA基于DE2-115 开发板板和HC_SR04驱动的超声波测距

基于DE2 115开发板驱动HC_SR04超声波测距模块

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/21420.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

汽车数据应用构想(二)

一直说数据价值场景&#xff0c;啥叫有价值&#xff1f;啥样的场景有价值&#xff1f;按互联网的价值观来看&#xff0c;用户的高频需求就是价值。用户也许不会付费&#xff0c;但只要他天天用&#xff0c;那就是流量&#xff0c;就是用户黏性&#xff0c;就是价值&#xff01;…

阿贝云:免费虚拟主机和免费云服务器评测

阿贝云是一家知名的云服务提供商&#xff0c;提供免费虚拟主机和免费云服务器等服务。在今天的评测中&#xff0c;我们将对阿贝云的免费虚拟主机和免费云服务器进行详细的试用和评测。 首先&#xff0c;让我们来看看阿贝云的免费虚拟主机服务。阿贝云的免费虚拟主机提供稳定可靠…

方法重写

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 基类的成员都会被派生类继承&#xff0c;当基类中的某个方法不完全适用于派生类时&#xff0c;就需要在派生类中重写父类的这个方法&#xff0c;这和…

HALCON飞拍贴片机框架程序——硬件介绍

本专栏主要讲解三头贴片机框架程序&#xff0c;包括硬件介绍和软件代码。硬件主要为视觉部分&#xff0c;软件为视觉检测代码部分。贴片机的机械硬件不做介绍。 具体设备运行视频可以搜索博主抖Y&#xff1a;“伶俐科技”观看。 贴片机硬件如下图分为三个部分&#xff0c;第一…

网络安全等级保护,三级等保技术建议书(word原件获取)

1信息系统详细设计方案 1.1安全建设需求分析 1.1.1网络结构安全 1.1.2边界安全风险与需求分析 1.1.3运维风险需求分析 1.1.4关键服务器管理风险分析 1.1.5关键服务器用户操作管理风险分析 1.1.6数据库敏感数据运维风险分析 1.1.7“人机”运维操作行为风险综合分析 1.2…

详解 Spark核心编程之广播变量

广播变量是分布式共享只读变量 一、广播变量功能 ​ 广播变量用来将一个较大的数据对象发送到 Executor 并保存在内存中&#xff0c;同一个 Executor 中的所有 Task 都可以读取且只能读取广播变量中的数据&#xff0c;从而达到共享的目的&#xff0c;避免 Executor 中存在大量…

大语言模型技术系列讲解:大模型应用了哪些技术

为了弄懂大语言模型原理和技术细节&#xff0c;笔者计划展开系列学习&#xff0c;并将所学内容从简单到复杂的过程给大家做分享&#xff0c;希望能够体系化的认识大模型技术的内涵。本篇文章作为第一讲&#xff0c;先列出大模型使用到了哪些技术&#xff0c;目的在于对大模型使…

基于51单片机数控直流数控电源的设计

电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。直流稳压电源是电子技术常用的仪器设备之一,广泛的应用于教学、科研等领域,是电子实验员、电子设计人员及电路开发部门进行…

kotlin1.8.10问题导致gson报错TypeToken type argument must not contain a type variable

书接上回&#xff0c;https://blog.csdn.net/jzlhll123/article/details/139302991。 之前我发现gson报错后&#xff1a; gson在2.11.0给我的kotlin项目代码报错了。 IllegalArgumentException: TypeToken type argument must not contain a type variable 上次解释原因是因为&…

String常用操作

String常用方法 构造字符串 常用的构造字符串有3种&#xff1a; 1.直接赋值String s "abcd"; 2.实例化调用构造方法String s new String("abcd"); 3.实例化传字符数组 char[] ch {a,b,c,d}; String s new String(ch);字符串比较 比较 比较的是两个…

35【Aseprite 作图】苹果——拆解

1 叶子是&#xff0c;竖着4&#xff0c;然后2 1 竖2&#xff1b;左边是1 2 横着2&#xff1b;然后横着连接 之后画苹果&#xff0c;4 3 1 1 1 &#xff0c;竖着8 2 1 1 1 2 横着5&#xff1b;之后水平翻转&#xff08;苹果左右一样&#xff09; 2 加上浅绿做底色 3 阴影部分 …

C语言 | Leetcode C语言题解之第128题最长连续序列

题目&#xff1a; 题解&#xff1a; typedef struct {int key;UT_hash_handle hh; }Hash; int longestConsecutive(int* nums, int numsSize) {Hash* headNULL;Hash* tempNULL;for(int i0;i<numsSize;i){int numnums[i];HASH_FIND_INT(head,&num,temp);if(!temp){temp…

HCIP的学习(27)

RSTP—802.1W—快速生成树协议 STP缺陷&#xff1a; 1、收敛速度慢----STP的算法是一种被动的算法&#xff0c;依赖于计时器来进行状态变化 2、链路利用率低​ RSTP向下兼容STP协议。&#xff08;STP不兼容RSTP&#xff09; 改进点1—端口角色 802.1D协议---根端口、指定端口…

驾校-短视频营销招生精品课:抖音推广技巧,抖音短视频招生(41节课)

课程下载&#xff1a;驾校-短视频营销招生精品课&#xff1a;抖音推广技巧&#xff0c;抖音短视频招生(41节课)-课程网盘链接提取码下载.txt资源-CSDN文库 更多资源下载&#xff1a;关注我。 课程内容&#xff1a; 课程目录 [1]-第1课驾校为什么要全力做好短视频营销.mp4 …

Word2021中的The Mathtype DLL cannot be found问题解决(office 16+mathtype7+非初次安装)

问题描述&#xff0c;我的问题发生在word中无法使用自定义功能区中的mathtype 我的环境是&#xff1a;W11Word2021mathtype7 因为我是第二次安装mathtype7&#xff0c;所以我怀疑是因为没有卸载干净&#xff0c;于是我参考了下面这篇文章的做法 参考文章 1.首先重新卸载当前的…

Go语言学习记录

GO语法学习之路 学习时间段2024-06-02学习记录安装&环境配置Go安装包内容统一入门姿势&#xff1a;hello world实现 Go语法初学Go 运行时&#xff08;runtime&#xff09;Go解释器 学习时间段 #mermaid-svg-tTuVZ3bbdJvu04kX {font-family:"trebuchet ms",verdan…

每日一练——分糖果

575. 分糖果 - 力扣&#xff08;LeetCode&#xff09; 方法一 可以做&#xff0c;但提示超时了 #define MIN(x, y) (x < y ? x : y)int distributeCandies(int* candyType, int candyTypeSize) {int p 0;char flag 1;for (int i 1; i < candyTypeSize; i){for (int…

Java项目:94 springboot大学城水电管理系统

作者主页&#xff1a;源码空间codegym 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 本管理系统有管理员和用户。 本大学城水电管理系统管理员功能有个人中心&#xff0c;用户管理&#xff0c;领用设备管理&#xff0c;消耗设备…

基于51单片机的俄罗斯方块

一.硬件方案 本设计采用STC89C52RC单片机作为系统的芯片&#xff0c;实现人机交互、娱乐等功能。选用LCD12864实现俄罗斯方块游戏界面、图形显示&#xff1b;选用独立按键实现游戏控制。本设计实现的基本功能是&#xff1a;用按键控制目标方块的变换与移动&#xff1b;消除一行…

OpenCASCADE开发指南<十四>:OCCT建模类之BRepPrimAPI_MakePipe创建管道

1、OpenCasCade拓扑几何 在Open CASCADE Technology (OCCT) 中,除了基本三维几何体建模类BRepBuilderAPI外,还提供了复杂模型的建模类,常用的有如下几种,他们可以单独使用或相互组合,通过OCCT提供的融合函数进行组装。例如:BRepOffsetAPI_ThruSections、BRepOffsetAPI_Ma…