JVMの内存泄漏内存溢出案例分析

1、内存溢出

        内存溢出指的是程序在申请内存时,没有足够的内存可供分配,导致无法满足程序的内存需求,常见的内存溢出情况包括堆内存溢出(Heap Overflow)和栈溢出(Stack Overflow):     

  • 堆内存溢出通常发生在程序申请的对象过多,堆内存无法满足这些对象的存储需求时。
  • 栈溢出则通常发生在方法调用层次过深,导致栈空间耗尽。(例如递归没有正确设置退出条件)

2、内存泄漏

        内存泄漏指的是程序在使用完内存后未能正确释放(回收)这些内存,导致程序长时间运行后占用的内存逐渐增加,最终耗尽系统的可用内存,内存泄漏通常是由于程序中存在未释放的无用对象或资源(如文件句柄、数据库连接等)引起的。

        简单的说,就是正常情况下,某个对象不再被程序使用的同时,理应不存在GC Root的引用链上,在下一次GC时被回收,而造成内存泄漏的情况下,即使某个对象不再被程序使用,依旧存在于GC Root的引用链上,导致一直无法被回收,最终会导致内存溢出

3、监控内存

        监控内存的方式有很多种,这里介绍一种使用JDK 1.8自带的VisualVM工具(JDK 1.8之后需要自行下载):

        位于JDK的bin目录下:

        也可以通过IDEA集成VisualVM插件的方式:

        插件安装完毕后需要进行设置,路径为JDK下的bin目录中的文件。

         在启动程序时选择:

        会自动弹出Visual界面,进行监控:


使用案例:

        这里有一段程序:

public class Demo0 {public static long count = 0;public static void main(String[] args) throws InterruptedException {while (true){byte[] bytes = new byte[1024 * 1024 * 5];}}
}

        byte[]数组虽然是强引用,但是作用域只是在每次循环中,一旦循环结束,它们就会超出作用域而无法再被访问到,所以不会发生内存溢出,对应的内存图如下:

         接下来改写一下这个程序:

public class Demo0 {public static long count = 0;public static void main(String[] args) throws InterruptedException {List<byte[]> byteList = new ArrayList<>();while (true){byte[] bytes = new byte[1024 * 1024 * 5];byteList.add(bytes);}}
}

        不同于上一个案例。在循环外创建了一个集合,每次都将循环中的bytes的引用放入集合中,最终集合无法被垃圾回收,导致内存溢出:

         通过上面两种情况,可以发现,在正常情况下,内存曲线应该是在一个固定的范围内起伏的,而内存溢出的情况则是曲线持续增长,即使手动进行GC也无法回收大部分的对象。

4、内存溢出原因分析

        在实际应用中,造成内存溢出的原因一般会有两种,第一种是因为代码中的不规范做法/bug,第二种则是因为某个接口同一时间的并发请求过多,而处理速度慢造成的。

        代码中的内存溢出:

        4.1、未正确重写hashCode()equals()方法

        我现在有一个Student类:

public class Student {private String name;private Integer id;private byte[] bytes = new byte[1024 * 1024];public String getName() {return name;}public void setName(String name) {this.name = name;}public Integer getId() {return id;}public void setId(Integer id) {this.id = id;}
}

        在主类中通过一个静态HashMap在一个死循环中存放Student对象(关于静态问题后面会分析):

public class Demo2 {public static long count = 0;public static Map<Student,Long> map = new HashMap<>();public static void main(String[] args) throws InterruptedException {while (true){if(count++ % 100 == 0){Thread.sleep(10);}Student student = new Student();student.setId(1);student.setName("张三");map.put(student,1L);}}
}

        结果是发生了内存溢出。

        要了解为什么上面的做法会导致内存溢出,我们首先复习一下一个元素是如何放入HashMap的,当向 HashMap 中放入一个元素时,会经历以下过程:

  • HashMap 会调用键的hashCode()方法来计算键的哈希值。哈希值是用来确定键值对在哈希表中存储位置的重要依据。
  • HashMap 会根据计算得到的哈希值和哈希表的大小,确定键值对在哈希表中的存储位置。(通过取模运算记录桶下标)
  • 如果存在hash冲突就会进行处理(链表+红黑树),HashMap 将键值对插入到确定的存储位置中,如果存在相同键(根据equals()方法判断),则会更新对应的值。

        由此可见,hashCode()equals()方法在上面的过程中至关重要。如果我们没有重写hashCode()equals()方法,默认会使用Object类中的,我们可以点进去看一下:

        Object中的hashCode() 方法使用的是本地方法,equals()方法使用的是==,比较的是地址值。

        在上面的案例中,使用了Object中的hashCode()equals() 方法,可能会导致相同ID的对象,计算出的hash值却不一样,就会放在hashMap不同的槽位上。而equals() 方法比较的是地址值:

 Student student = new Student();

        每一个创建出的对象的地址值都是不一样的,导致即使学生的id和name相同,也是不同的对象,导致hashMap中存在的无法被回收的对象持续增加,最终OOM

        而我们想要的效果是,后一个相同的key覆盖前一个相同的key。就需要重写hashCode()equals() 方法:

    @Overridepublic boolean equals(Object o) {if (this == o) {return true;}if (o == null || getClass() != o.getClass()) {return false;}Student student = (Student) o;return new EqualsBuilder().append(id, student.id).isEquals();}@Overridepublic int hashCode() {return new HashCodeBuilder(17, 37).append(id).toHashCode();}

        所以在定义Java Bean时,需要手动重写hashCode()equals() 方法 ,并且在定义HashMap时,不建议使用对象作为Key的类型,推荐使用String类型,提高查找效率。

        4.2、内部类引用外部类

        首先来简单复习一下什么是外部类和内部类:

  • OuterClass是一个外部类,外部类可以直接访问其内部定义的成员变量和方法,但无法直接访问内部类的成员。
  • InnerClass是一个内部类,内部类可以访问外部类的所有成员,包括私有成员,并且可以直接访问外部类的方法和字段。
public class OuterClass {private int outerVar;public void outerMethod() {// 可以访问内部类}// 内部类的定义public class InnerClass {public void innerMethod() {// 可以访问外部类的成员变量和方法outerVar = 10;outerMethod();}}
}

        在创建内部类的实例时,需要用到外部类的实例

 public static void main(String[] args) {OuterClass outer = new OuterClass();OuterClass.InnerClass inner = outer.new InnerClass();  // 创建内部类的实例需要使用外部类的实例inner.innerMethod();  // 调用内部类的方法}

        一个内部类引用外部类导致内存溢出的案例:

public class Outer {private byte[] bytes = new byte[1024 * 1024]; //外部类持有数据private String name = "测试";class Inner {private String name;public Inner() {this.name = Outer.this.name;}}public static void main(String[] args) throws IOException, InterruptedException {
//        System.in.read();int count = 0;//集合存放的是Outer外部类中Inner内部类的对象ArrayList<Inner> inners = new ArrayList<>();while (true) {if (count++ % 100 == 0) {Thread.sleep(10);}//创建内部类,需要用到外部类的实例inners.add(new Outer().new Inner());}}
}

        我们在inners.add(new Outer().new Inner());这一行打一个断点:

        内部类中持有了一个外部类的引用 ,导致外部类此时也在GC Root的引用链上,不会被回收。

        如果需要解决这样的问题,我们可以使用静态内部类,再简单的复习一下一般内部类和静态内部类的区别:

  1. 静态内部类可以直接通过外部类访问静态内部类是独立的,不依赖于外部类的实例,因此可以直接通过外部类来访问。(解决内部类引用外部类内存溢出的关键)

  2. 静态内部类不能访问外部类的非静态成员:由于静态内部类是独立的,因此无法访问外部类的非静态成员变量和方法。

  3. 静态内部类可以直接创建实例:可以直接通过"外部类.内部类"的方式创建静态内部类的实例,而不需要先创建外部类的实例。

         改造案例中的代码:

public class Outer {private byte[] bytes = new byte[1024 * 1024]; //外部类持有数据private static String name = "测试";static class Inner {private String name;public Inner() {this.name = Outer.name;}}public static void main(String[] args) throws IOException, InterruptedException {
//        System.in.read();int count = 0;ArrayList<Inner> inners = new ArrayList<>();while (true) {if (count++ % 100 == 0) {Thread.sleep(10);}inners.add(new Inner());}}
}

        此时内部类完全独立,不再持有外部类的引用,所以外部类可以正常被回收。

        4.3、ThreadLocal的不正确使用

        如果是在手动创建线程的线程中使用ThreadLocal,一般不会造成内存溢出:

public class Demo5_1 {public static ThreadLocal<Object> threadLocal = new ThreadLocal<>();public static void main(String[] args) throws InterruptedException {while (true) {new Thread(() -> {threadLocal.set(new byte[1024 * 1024 * 10]);}).start();Thread.sleep(10);}}
}

        每个线程对ThreadLocal中存储的对象都有独立的副本,线程一旦结束,其中的内存便会得到释放,即使不使用.remove()方法,如果每次存放入ThreadLocal的数据量不大,也不一定会发生内存溢出。

        当使用线程池统一创建线程时,线程不一定是立刻被回收,如果没有使用.remove()方法 ,则大概率会造成内存溢出。

public class Demo5 {public static ThreadLocal<Object> threadLocal = new ThreadLocal<>();public static void main(String[] args) throws InterruptedException {ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(Integer.MAX_VALUE, Integer.MAX_VALUE,0, TimeUnit.DAYS, new SynchronousQueue<>());int count = 0;while (true) {System.out.println(++count);threadPoolExecutor.execute(() -> {threadLocal.set(new byte[1024 * 1024]);});Thread.sleep(10);}}
}

        解决方式也很简单,线程中的逻辑执行完成后,手动调用ThreadLocal的.remove()方法。

        4.4、String的Intern()方法

        Intern() 方法的作用是,将调用该方法的字符串放入字符串常量池中,在JDK 1.8中,字符串常量池位于堆中。

        如果不同字符串的Intern() 方法被大量调用,达到堆内存上限后也会造成内存溢出的问题。(在实际开发中很少遇到,了解即可)

       4.5、通过static字段修饰的容器保存对象

        在前篇中提到,如果某个类的静态资源被引用,即使该类的实例全部不可达,该类也无法被回收。 并且static 字段属于类级别的,而不是属于某个实例,生命周期和类一样长,因此保存在其中的对象也会持续存在直到类被卸载。

        当大量对象被保存在 static 字段所属的类中时,这些对象将随着类的加载而被创建并持续存在于堆内存中。如果这些对象没有被及时释放,就会导致堆内存不断被占用,最终导致内存溢出。

        static 字段属于类级别的,所有实例共享同一个 static 字段,因此如果保存在其中的对象过多或者对象占用过多内存,就会对整个应用产生影响,容易导致内存资源的耗尽。

        所以被static关键字修饰的变量,当不再使用时,需要手动将引用设置为null方便下次回收。

       4.6、IO或数据库连接资源没有及时关闭

       IO或数据库连接资源没有及时关闭,并不一定会100%导致内存泄漏,其原因与在手动创建线程中使用完ThreadLocal后没有手动调用.remove()方法类似。如果是在连接池中使用,或者短时间内连接数过多,依旧有可能会造成内存溢出。

        推荐使用JDK 7 的新特性try..with...resources进行连接管理。

        前提是被管理的连接需要实现AutoCloseable接口。


        另一个可能导致内存溢出的原因,在于多线程并发访问时:

        4.7、多线程并发访问

        通常,用户在页面上点击按钮发送请求,服务器端会通过数据库进行处理,将查询的结果集读取到内存中并且返回给页面,然后就可以释放这部分内存。但是如果处理逻辑复杂,过程消耗时间较久,同时又有大量的请求,会导致数据全部积压在内存中,最终导致内存溢出。

        例如下面这一段代码,模拟了数据量大,并且处理时间长的场景:

    @GetMapping("/test")public void test1() throws InterruptedException {byte[] bytes = new byte[1024 * 1024 * 100];//100mThread.sleep(10 * 1000L);}

        如果需要演示高并发的场景,可以通过压力测试工具实现,我这里使用Jmeter。

        准备工作:将最大堆内存和初始堆内存设置成1g

        配置Jmeter

        经过了100次/s的请求,发生了内存溢出:


        再模拟一种使用静态关键字修饰的容器存放大量数据的情况:

    /*** 登录接口 传递名字和id,放入hashmap中*/@PostMapping("/login")public void login(String name, Long id) {userCache.put(id, new UserEntity(id, name));}

        Jmeter配置

         

        最终同样会造成内存溢出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/20511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI去衣技术中的几何着色:揭秘数字时尚的魔法

在数字化时代&#xff0c;人工智能&#xff08;AI&#xff09;正以前所未有的速度改变我们的生活&#xff0c;从智能家居到自动驾驶汽车&#xff0c;再到个性化医疗。然而&#xff0c;AI的影响远不止于此。它正在重塑我们对艺术、设计和时尚的理解。特别是在数字时尚领域&#…

Unity打包Webgl端进行 全屏幕自适应

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 一&#xff1a;修改 index.html二&#xff1a;将非移动端设备&#xff0c;canvas元素的宽度和高度会设置为100%。三&#xff1a;修改style.css总结 下载地址&#x…

Solidity学习-投票合约示例

以下的合约有一些复杂&#xff0c;但展示了很多Solidity的语言特性。它实现了一个投票合约。 当然&#xff0c;电子投票的主要问题是如何将投票权分配给正确的人员以及如何防止被操纵。 我们不会在这里解决所有的问题&#xff0c;但至少我们会展示如何进行委托投票&#xff0c;…

《java数据结构》--详解Map和Set

概念 Map和set是一种专门用来进行搜索的容器或者数据结构&#xff0c;其搜索的效率与其具体的实例化子类有关。在之前我们常见的搜索方式一般有两种&#xff1a; 一种是直接遍历&#xff0c;这种方法的时间复杂度为O(N)&#xff0c;如果元素比较多的话效率会十分低下另一种是…

Leecode---动态规划---打家劫舍 / 乘积最大子数组

动态规划法&#xff1a; 思路&#xff1a; &#xff08;1&#xff09;状态定义&#xff1a;dp[i]代表前i家能偷盗的最大金额 &#xff08;2&#xff09;状态初始化&#xff1a;如果只有一家&#xff0c;只能偷这家dp[0]nums[0]&#xff1b;如果有两家&#xff0c;因为是连通的&…

看图猜成语微信小程序源码

后台可以自行设置关卡、等级、也可以一键部署&#xff0c; 开通流量主之后实现躺赚&#xff0c;你懂得。 个人号也可以开通&#xff0c;审核一次性必过。 类目选择 教育&#xff0c;源码仅供您参考&#xff01; 源码下载 https://download.csdn.net/download/huayula/8938579…

【计算机毕业设计】基于SSM+Vue的网上花店系统【源码+lw+部署文档】

目录 目 录 1 绪论 1.1 选题背景 1.2 选题意义 1.3 研究内容 2 系统开发技术 2.1 Java语言 2.2 SSM框架 2.3 MYSQL数据库 2.4 Vue框架 3 系统分析 3.1可行性研究 3.1.1经济可行性 3.1.2时间可行性 3.1.3操作可行性 3.2系统性能分析 3.2.1系统易用性 3.2.2系统健壮性 3.2.3系统…

电脑没电关机,wsl和docker又挂了,附解决过程

如题&#xff0c;开了个会没带笔记本电源&#xff0c;点啊弄关机后docker打不开&#xff0c;我以为是docker坏了&#xff0c;结果docker报错&#xff1a; An unexpected error occurred while executing a WSL command. Either shut down WSL down with wsl --shutdown, and/or…

【蓝桥杯国赛】双指针

适用于以下的情境&#xff1a; ① 数组 / 字符串中&#xff0c;有多少个满足情况的连续区间。 ② 数组 / 字符串&#xff0c;合并。 【第十三届pythonB组试题&#xff1a;近似gcd】 1. 题目描述 2. 难度&#xff1a;⭐⭐⭐⭐ 3. 思考分析&#xff1a; 具体参考&#xff…

依据SAM大模型识别的英国农田(农业田野)边界(FIBOA)矢量数据集

简介 fiboa 是一项旨在提高农田边界数据互操作性和相关农业数据的合作计划。最近推出的 fiboa 不仅仅是一个规范&#xff0c;它还是一个全面的系统&#xff0c;包括符合规范的数据、不断完善规范的讨论以及积极促进其发展的活跃社区。本项目的重点是促进创建更多有关田地边界和…

黑马程序员——Spring框架——day03

目录&#xff1a; AOP AOP简介 问题导入AOP简介和作用【理解】AOP的应用场景为什么要学AOPAOP入门案例【重点】 问题导入AOP入门案例思路分析AOP入门案例实现AOP中的核心概念AOP工作流程【理解】 问题导入AOP工作流程AOP核心概念在测试类中验证代理对象AOP切入点表达式 问题导…

【python】爬虫记录每小时金价

数据来源&#xff1a; https://www.cngold.org/img_date/ 因为这个网站是数据随时变动的&#xff0c;用requests、BeautifulSoup的方式解析html的话&#xff0c;数据的位置显示的是“--”&#xff0c;并不能取到数据。 所以采用webdriver访问网站&#xff0c;然后从界面上获取…

C语言 指针——函数指针的典型应用:计算定积分

目录 梯形法计算函数的定积分 函数指针的典型应用 梯形法计算函数的定积分 函数指针的典型应用 用函数指针编写计算任意函数定积分的 通用 函数

Vivado 比特流编译时间获取以及FPGA电压温度获取(实用)

Vivado 比特流编译时间获取以及FPGA电压温度获取 语言 &#xff1a;Verilg HDL 、VHDL EDA工具&#xff1a;ISE、Vivado Vivado 比特流编译时间获取以及FPGA电压温度获取一、引言二、 获取FPGA 当前程序的编译时间verilog中直接调用下面源语2. FPGA电压温度获取&#xff08;1&a…

es的总结

es的collapse es的collapse只能针对一个字段聚合&#xff08;针对大数据量去重&#xff09;&#xff0c;如果以age为聚合字段&#xff0c;则会展示第一条数据&#xff0c;如果需要展示多个字段&#xff0c;需要创建新的字段&#xff0c;如下 POST testleh/_update_by_query {…

JVM学习-详解类加载器(一)

类加载器 类加载器是JVM执行类加载机制的前提 ClassLoader的作用 ClassLoader是Java的核心组件&#xff0c;所有的Class都是由ClassLoader进行加载的&#xff0c;ClassLoader负责通过各种方式将Class信息的二进制数据流读入JVM内部&#xff0c;转换为一个与目标类型对应的ja…

Java学习【String类详解】

Java学习【String类详解】 String的介绍及定义方式String类型的比较String类型的查找charAt()访问字符indexOf()查找下标 转化和替换数值和字符串转化大小写的转换字符串转数组格式化替换 字符串的拆分和截取split()拆分substring()截取trim()去除两边空格 StringBuilder和Stri…

苏州金龙客车为新疆哪吒车队提供车辆交车

2024年旅游旺季提前到来、时间延长&#xff0c;新疆旅游市场有望延续去年火爆态势。 近期&#xff0c;新疆哪吒运输服务有限公司&#xff08;以下简称“哪吒车队”&#xff09;订购的最新一批10辆苏州金龙海格高端旅游大巴在苏州金龙厂区正式交付。哪吒车队负责人伍亚丽笑容满…

SpringCloud学习笔记万字整理(无广版在博客)

在此感谢黑马程序员的SpringCloud课程 所有笔记、生活分享首发于个人博客 想要获得最佳的阅读体验&#xff08;无广告且清爽&#xff09;&#xff0c;请访问本篇笔记 认识微服务 随着互联网行业的发展&#xff0c;对服务的要求也越来越高&#xff0c;服务架构也从单体架构逐渐…