数据库语法树优化

目录

一、σ、π、⋈

    1.选择σ

    2.投影π

    3.连接⋈

二、 构建语法树

    ① 解读sql语句

    ② 写出关系代数表达式

    ③ 画出语法树

三、优化语法树

四、练习

    语法树优化方法


一、σ、π、⋈

    1.选择σ

       选择就是在关系R中选择满足给定条件的诸元组。

       通过条件Sdept='IS'选择出系别是IS的学生信息。 

    2.投影π

       关系R上的投影是从R中选择出若干属性列组成新的关系。

       选择出Sname、Sdept属性列组成新的关系。

通过两幅图对比可以看出,选择σ是从原表中选择出满足条件的行,投影π是从原表中选择出满足条件的列。

    3.连接⋈

       连接也称为θ连接。它是从两个关系的笛卡儿积中选取属性间满足一定条件的元组。

       连接分为非等值连接,等值连接、自然连接。其中我们需要注意的是自然连接,理解自然连接是什么请参考文章:非等值连接、等值连接、自然连接-CSDN博客 

二、 构建语法树

    ① 解读sql语句

       通常考查语法树优化的都是多表查询。
       章节一中说到,投影是从一个关系中选择出若干属性列组成新的关系,select语句部分描述的的是投影π。
       where表示的条件可以分为两部分,一部分是题目真正想查询的结果,另一部分是多表连接的条件,where语句强调的是条件,也就是选择,章节一中说到选择就是在一个关系中选择满足给定条件的诸元组。所以where语句部分描述的是选择σ。
       最后则剩下关系表的连接,表的连接在语法树中笛卡尔积,符号用 x 表示。

    ② 写出关系代数表达式

       以书上如下例子,写出关系代数表达式:


    此题中SC.Cno='2',是题目真正想查询的结果;而Student.Sno=SC.Sno则是两表连接的条件。

    ③ 画出语法树

       有了关系表达式,我们就可以画出语法树,画语法树时有一个技巧:"由外到里,由上到下",由关系表达式最外面的括号开始一层层向里从上到下画出语法树

三、优化语法树

     语法树的优化实际上就是通过条件不断选择出一个更加细化的关系,再与另一个关系笛卡尔积连接,这样可以减少计算量。

    当然书上用的等值连接,在笛卡尔积上加上条件用以选择,表达的意义与等值连接相同,理解即可。如果题目要求用等值连接,或者题目给出的关系代数表达式用的等值连接,那么画图也要用等值连接。

四、练习

    书上例子较为简单,这里用一个稍微复杂一点的例子练习用以加深理解。

    语法树优化也许各有各的方法,我的方法如下:

    语法树优化方法

       第一步:把题目想查询的结果的选择条件移动到对应关系模式前。
       第二步:把表的连接条件拆开,移动到对应关系模式前。
       第三步:在对应关系模式前,添加题目查询所需的列属性和连接条件的投影。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/17885.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于香橙派搭建家庭网盘

一、概述 家庭网盘是一种用于家庭用户的在线存储和文件共享服务。它允许家庭成员在云端存储、同步和分享照片、视频、文档等文件,方便快捷地访问和管理个人和家庭数据。家庭网盘通常提供安全可靠的数据存储和备份功能,保障用户数据的安全性。此外&#x…

Day-02面向对象

一、匿名函数 和函数的作用一致,都是进行代码逻辑的封装, 区别1 在定义时,匿名函数可以不指定函数的名字 区别2 匿名函数执行实现简单的计算 区别3 匿名函数会自动将计算的结果返回 定义格式 lambda 参数1,参数2...:计算逻辑(参数的处理逻辑…

一文解决弹窗交互设计难题,轻松上手

弹窗交互的分类 我们每天所说的弹出窗口是一个非常笼统的概念。我们习惯性地称所有的对话框、浮层和提示条为弹出窗口。事实上,弹出窗口可以分为两种类型:模态弹出框和非模态弹出框。在 UI 在设计中,当它迫使用户与之交互时,我们…

【算法】【二叉树,DFS,哈希集合,分类讨论】力扣1110. 删点成林

1110. 删点成林 文章目录 【算法】力扣【二叉树,DFS,哈希集合,分类讨论】1110. 删点成林题目描述示例 1:示例 2: 输入输出示例解释思路解析核心思想算法步骤复杂度分析 代码实现总结 【算法】力扣【二叉树&#xff0c…

ElasticSearch - 删除已经设置的认证密码(7.x)

文章目录 Pre版本号 7.x操作步骤检查当前Elasticsearch安全配置停止Elasticsearch服务修改Elasticsearch配置文件删除密码重启Elasticsearch服务验证配置 小结 Pre Elasticsearch - Configuring security in Elasticsearch 开启用户名和密码访问 版本号 7.x ES7.x 操作步骤 …

马斯克xAI融资60亿美元,宣布打造世界第一超算中心,10万张H100GPU

昨天,埃隆马斯克的xAI初创公司宣布获得60亿美元的巨额融资,主要用于打造一台巨大的超级计算机,马斯克称之为“超级计算工厂”。 从创立OpenAI到如今的xAI,技术和算力的发展历经了几个时代,但似乎马斯克的吸金能力一直…

一文讲透redis实现分布式锁里面的坑

一.前提 相信大家在使用分布式锁的时候都会选择redis或者zookeeper来实现。今天我们来讲一讲使用Redis实现分布式锁里面的坑。大家要避免 二.错误案例 1.jedis.setnx方法和jedis.expire组合实现加锁 上代码: Long result jedis.setnx(lockKey, requestId);if (re…

高精度算法(加减乘除)

高精度算法 高精度加法高精度减法高精度乘法高精度除法 高精度加法 高精度加法&#xff1a;反向存数组里&#xff0c;人工模拟两数相加 #include <iostream> #include <string> #include <vector> using namespace std; string s1, s2; void add(vector<…

代码随想录算法训练营day21|530.二叉搜索树的最小绝对值差、501.二叉搜索树中的众数、236.二叉树的最近公共祖先

二叉搜索树的最小绝对值差 递归法 首先需考虑这是一个二叉搜索树&#xff0c;在中序遍历后的结果为从小到大的一个序列&#xff0c;寻找二叉搜索树的最小绝对值差&#xff0c;只需比较一个节点与之后的差值即可。在遍历的过程中&#xff0c;我们需要一个节点保存前节点…

短道速滑短视频:四川京之华锦信息技术公司

短道速滑短视频&#xff1a;冰雪激情的视觉盛宴 随着冬奥会的热度不断攀升&#xff0c;短道速滑作为其中一项紧张刺激、充满观赏性的运动&#xff0c;受到了越来越多人的关注。而在社交媒体和短视频平台的助力下&#xff0c;短道速滑短视频成为了人们了解、欣赏这项运动的新窗…

vxe-form-design 表单设计器的使用

vxe-form-design 在 vue3 中表单设计器的使用 查看官网 https://vxeui.com 安装 npm install vxe-pc-ui // ... import VxeUI from vxe-pc-ui import vxe-pc-ui/lib/style.css // ...// ... createApp(App).use(VxeUI).mount(#app) // ...使用 github vxe-form-design 用…

Python在忘mysql密码后该如何重新连mysql

步骤一 先到mysql的bin目录下 步骤二 用mysqld delete mysql 把之前的库删了 步骤三 通过管理员模式进去后 用命令mysqld --skip-grant-tables越过验证 再输入mysql -u root 直达账户 步骤四 用FLUSH PRIVILEGES; ALTER USER rootlocalhost IDENTIFIED BY new_password; 指…

汽车热管理:新能源汽车发展的关键技术

在全球气候变化和能源危机的背景下,新能源汽车作为一种可持续的交通方式,正逐渐成为汽车行业的发展趋势。然而,新能源汽车的发展也面临着一些挑战,其中之一就是热管理问题。汽车热管理系统的设计和优化,对于提高新能源汽车的性能、延长电池寿命、提高能源效率以及确保乘客…

关于实践中生产调度技术落地应用时的挑战

文章目录 1. 问题背景2. 实践中常见的调度技术2.1 基于优先级调度规则2.2 基于搜索的排程技术2.3 基于瓶颈调度的方法2.4 基于知识的排程方法3. 调度技术落地时的挑战及建议3.1 存在不确定的干扰因素3.2 调度方案的生成方法与实际生产结构不匹配3.3 依据严苛时间表派工的压力3.…

Echarts x轴坐标二级分组

在使用echarts 封装组件的时候&#xff0c;偶尔会遇到需要x轴坐标进行二层分组的需求。那么如何对echarts 进行二层分组呢&#xff0c;有以下几个步骤&#xff1a; 仅介绍二层分组的逻辑。有兴趣的可以进行三层延伸。 1&#xff0c;修改echarts Options 中xAxis 的配置。 此…

交换排序、归并排序、计数排序

冒泡排序&#xff1a; void BubbleSort(int* a, int n) {//第一层循环是趟数&#xff0c;第二层是交换for (int i 0; i < n-2; i){int flag 0;for (int j 0; j < n - 2 - i; j){if (a[j] > a[j 1]){swap(&a[j], &a[j 1]);flag 1;}}if (flag 0){break;…

【机器学习】K-近邻算法(KNN)全面解析

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 K-近邻算法&#xff08;KNN&#xff09;全面解析概述1. 基本概念与原理1.1 KNN算…

Excel表格保护密码遗忘怎么办?三秒钟破解密码,轻松解锁!

在我们的日常工作中&#xff0c;Excel表格是一个非常实用的工具&#xff0c;但在某些情况下&#xff0c;我们可能会遇到密码忘记的问题&#xff0c;或者在尝试打开或删除文件时被锁定。别担心&#xff0c;这里有三个简单的解决方法来帮助您解决问题。 一、尝试默认密码或常见密…

使用 Orange Pi AIpro开发板基于 YOLOv8 进行USB 摄像头实时目标检测

文章大纲 简介算力指标与概念香橙派 AIpro NPU 纸面算力直观了解 手把手教你开机与基本配置开机存储挂载设置风扇设置 使用 Orange Pi AIpro进行YOLOv8 目标检测Pytorch pt 格式直接推理NCNN 格式推理 是否可以使用Orange Pi AIpro 的 NPU 进行推理 呢&#xff1f;模型开发流程…

gitlab push 代码,密码正确,仍然提示HTTP Basic: Access denied. The provided password

HTTP Basic: Access denied. The provided password or token is incorrect or your account has 2FA enabled and you must use a personal access token instead of a password gitlab 登录账户密码确认正确&#xff0c;登录获取代码仍然提示以上问题&#xff0c;解决方案 …