目录
一、菊花链简介
二、菊花链与CAN通信的区别
三、常见的菊花链AFE芯片
四、菊花链数据结构
五、菊花链方案介绍
一、菊花链简介
首先简单的说一下菊花链以及菊花链的应用,在目前国内的BMS开发中,我们应用最广泛的目前还还是分布式,只是越来越集中而已,真正完全集中式的BMS其实比较少。
BMS一般分为主板和从板(有些将电流采样、绝缘检测等功能单独拿出来做一个电流模块或者绝缘检测模块),在菊花链出来之前,主从板上都有MCU,从板采集单体电池电压和温度,通过CAN总线传给主板。
而在目前成本日益严峻的今天,怎么实现降本就是各个主机厂以及芯片厂所重点关注的内容,所以菊花链出现了。在电子领域,菊花链是一种配线方案,例如设备A和设备B用电缆相连,设备B再用电缆和设备C相连,设备C用电缆和设备D相连,在这种连接方法中不会形成网状的拓扑结构,只有相邻的设备之间才能直接通信。当设备与设备之间按照固定的通讯模式通讯的时候,每个从板就可以不用配备一个CAN收发器和与之配套的MCU了,能够实现降本50%以上。
这个图就是菊花链在BMS上的一个典型应用,MCU通过专用的转换解码芯片,将SPI信号转换成差分通讯信号,然后通过变压器或者电容,将差分信号在相互隔离的采样芯片之间进行传递。
二、菊花链与CAN通信的区别
一主两从架构BMS的主板与从板间通信方式主要有两种:CAN通信和菊花链通信。因为CAN通信在汽车电子上的应用时间长且通信稳定性很好,所以早期主板与从板之间采用CAN通信方式(当前一些量产车型上仍然使用CAN通信),出于汽车电子成本方面的考虑,业内逐渐发展了一种新的通信方式——菊花链通信,由于使用元器件更少(减少了芯片使用)更具成本优势,虽然稳定性没有CAN通信这么好,但是考虑到BMS多数场景下放置在一个相对封闭应用场景(电池包内部),并且主板与从板之间的线束较短,符合应用要求,所以目前市场上使用更多的是菊花链通信方式。目前BMS使用的就是菊花链通信架构。
三、常见的菊花链AFE芯片
BMS行业的菊花链技术是各AFE芯片厂家来推动的。早期AFE芯片与微控制器通信基本都是以SPI为主,针对于菊花链通信,各芯片厂家分别开发出了AFE间差分信号通信的技术和将差分信号转换为SPI或UART等协议与微控制器通信。在这两个部分,各家都是私有协议,还没有行业通用标准出现。各家对自己的菊花链通信技术的命名也不同,比如Linear的是Iso-SPI,NXP的是TPL(Twist Pair ), Maxim的是differential daisy-chain UART。
四、菊花链数据结构
Daisy Chain的数据帧结构类似232等串行通讯,有专门的起始位和截止位。目前Daisy Chain的数据帧定义未有一个统一标准,不同芯片厂商有不同的定义,ADI数据帧结构为16bit,NXP为52bit,TI为13bit。
一帧数据由11个 DaisyChain的bit和2个Daisy Chain的half bit组成(1个Daisy Chain bit为两个峰峰值为±5V脉冲),Preamble(0.5bit)+SYNC(2bit)+DATA(8bit)+ERRO(1bit)+Postamble(0.5bit)。Daisy Chain的数据具体组成如下:
图:BQ79616数据结构
其中Preamble为半个DaisyChain bit,1个5V正脉冲,用于触发Daisy Chain接收器的电平采样;SYNC为2个Daisy Chain bit,一般为00,用于Daisy Chain 接收器预采样:调节接收时钟和提前识别信号噪声,提高对后面8bit的数据帧抗干扰能力;DATA为数据帧的主要内容,由8bit组成;Byte ERRO为DaisyChain总线结构中的下位设备检测到接收错误时,提示上位设备重发数据的标志位,当上位机收到Byte ERRO的数据时,会重发上一帧数据,并Byte ERRO也会置1,提示下位机此帧为重发数据;Postamble为半个Daisy Chain bit,1个-5V脉冲,用于提示DaisyChain接收器数据发送结束。
图:NXP数据帧格式
五、菊花链方案介绍
1、TI方案
分布式电池包系统,有一个子系统包含主机 MCU,它通过控制器 局域网总线与车辆的控制单元连接。然后 MCU 处理器驱 动连接到电池模块的电池监测器件,用来检测电压和温 度。所有高压电池包均需要快速与主机 MCU 通信,为了支持这一需求,可以添加任意数量的电池监测器件,具体 取决于电池监测器支持的通道数量。系统需要监控和通信 的其他常见场景还有,通过高压继电器控制来确保在不使 用车辆时安全地断开高压,以及通过电流检测来计算充电 状态和了解电池包的运行状况。
bq7961X 系列器件上的菊花链通信接口是德州仪器 (TI) 开发的专有协议。该接口是使用差分信号设计的,以更大限度地降低电磁敏感性 (EMS) 和增强大电流注入 (BCI) 抗扰度。差分通信分别在 COM*P 和 COM*N 引脚上传输补码数据。该接口是双向和半双工的,因此在 COMH(高侧)和 COML(低侧)接口上有一个发送器 (TX) 和一个接收器 (RX)。
菊花链通信
2、ADI方案
3、NXP方案
MC33771采用可靠的高速菊花链通讯,可以替代传统的CAN总线通讯,对于96块单体电池串联的应用,菊花链通讯仅需2.6毫秒就能实现全部数据的采集与通信。飞思卡尔的电池监控芯片有电压和电流同步测量功能,可以在65微秒内实现内阻的测量。MC33664和MC33771的功能验证和诊断不仅可支持ISO 26262 SafeAssure功能安 全,还可以对所有电压测量、电流测量、电池终端断线或漏电流以及ADC精度执行功能验证。