卷积神经网络最重要的操作就是卷积层的卷积操作,之前文章中介绍过,卷积核filter往往都是3x3或者5x5什么的,但有一种非常特殊的卷积——1x1卷积。他在CNN中扮演着非常重要的角色。
一、通道维度的降维/升维
这是1x1卷积最显著的作用之一。通过应用具有较少输出通道的1x1卷积层,可以有效减少网络中的参数数量,从而降低模型的复杂度并帮助防止过拟合。相反,如果使用具有更多输出通道的1x1卷积,则可以增加特征图的深度,为网络引入更多的非线性,增强其表达能力。
二、计算通道间的组合权重
1x1卷积,虽然没有空间维度上的滑动(因为核大小为1x1),但它依然在通道维度上操作。想象一下,如果你的输入特征图有C个通道,那么一个1x1卷积层中的每个卷积核也将有C个权重,对应于输入的每一个通道。这些权重可以被视为对输入通道的一种加权组合方式。有助于捕捉更高级别的特征交互。