【golang】内存对齐

什么是内存对齐

在访问特定类型变量的时候通常在特定的内存地址访问,这就需要对这些数据在内存中存放的位置有限制,各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。

内存对齐是编译器的管辖范围。表现为:编译器为程序中的每个“数据单元”安排在适当的位置上。

为什么需要内存对齐

  • 有些CPU可以访问任意地址上的任意数据,而有些CPU只能在特定地址访问数据,因此不同硬件平台具有差异性,这样的代码就不具有移植性,如果在编译时,将分配的内存进行对齐,这就具有平台可以移植性了。

  • CPU 访问内存时并不是逐个字节访问,而是以字长(word size)为单位访问,例如 32位的CPU 字长是4字节,64位的是8字节。如果变量的地址没有对齐,可能需要多次访问才能完整读取到变量内容,而对齐后可能就只需要一次内存访问,因此内存对齐可以减少CPU访问内存的次数,加大CPU访问内存的吞吐量。

假设每次访问的步长为4个字节,如果未经过内存对齐,获取b的数据需要进行两次内存访问,最后再进行数据整理得到b的完整数据:

在这里插入图片描述如果经过内存对齐,一次内存访问就能得到b的完整数据,减少了一次内存访问:

在这里插入图片描述

golang中unsafe.AlignOf()函数

unsafe.AlignOf(x) 方法的返回值是 m,当变量进行内存对齐时,需要保证分配到 x 的内存地址能够整除 m。因此可以通过这个方法,确定变量x 在内存对齐时的地址:

  • 对于任意类型的变量 x ,unsafe.Alignof(x) 至少为 1。
  • 对于 struct 结构体类型的变量 x,计算 x 每一个字段 f 的 unsafe.Alignof(x.f),unsafe.Alignof(x) 等于其中的最大值。
  • 对于 array 数组类型的变量x,unsafe.Alignof(x) 等于构成数组的元素类型的对齐倍数。

对于系统内置基础类型变量 x ,unsafe.Alignof(x) 的返回值就是 min(字长/8,unsafe.Sizeof(x)),即计算机字长与类型占用内存的较小值:

func main() {fmt.Println(unsafe.Alignof(int(1))) // 1 -- min(8,1)fmt.Println(unsafe.Alignof(int32(1))) // 4 -- min (8,4)fmt.Println(unsafe.Alignof(int64(1))) // 8 -- min (8,8)fmt.Println(unsafe.Alignof(complex128(1))) // 8 -- min(8,16)
}  

内存对齐规则

  • 成员对齐规则

针对一个基础类型变量,如果 unsafe.AlignOf() 返回的值是 m,那么该变量的地址需要 被m整除 (如果当前地址不能整除,填充空白字节,直至可以整除)。

  • 整体对齐规则

针对一个结构体,如果 unsafe.AlignOf() 返回值是 m,需要保证该结构体整体内存占用是 m的整数倍,如果当前不是整数倍,需要在后面填充空白字节。

通过内存对齐后,就可以在保证在访问一个变量地址时:

  1. 如果该变量占用内存小于字长:保证一次访问就能得到数据;
  2. 如果该变量占用内存大于字长:保证第一次内存访问的首地址,是该变量的首地址。

eg:

type A struct {a int32b int64c int32
}func main() {fmt.Println(unsafe.Sizeof(A{1, 1, 1}))  // 24
}
  1. 第一个字段是 int32 类型,unsafe.Sizeof(int32(1))=4,内存占用为4个字节,同时unsafe.Alignof(int32(1)) = 4,内存对齐需保证变量首地址可以被4整除,我们假设地址从0开始,0可以被4整除:

在这里插入图片描述
2. 第二个字段是 int64 类型,unsafe.Sizeof(int64(1)) = 8,内存占用为 8 个字节,同unsafe.Alignof(int64(1)) = 8,需保证变量放置首地址可以被8整除,当前地址为4,距离4最近的且可以被8整除的地址为8,因此需要添加四个空白字节,从8开始放置:
S

  1. 第三个字段是 int32 类型,unsafe.Sizeof(int32(1))=4,内存占用为4个字节,同时unsafe.Alignof(int32(1)) = 4,内存对齐需保证变量首地址可以被4整除,当前地址为16,16可以被4整除:
    在这里插入图片描述

  2. 所有成员对齐都已经完成,现在我们需要看一下整体对齐规则:unsafe.Alignof(A{}) = 8,即三个变量成员的最大值,内存对齐需要保证该结构体的内存占用是 8 的整数倍,当前内存占用是 20个字节,因此需要再补充4个字节:
    在这里插入图片描述

  3. 最终该结构体的内存占用为 24字节。

type B struct {a int32b int32c int64
}func main() {fmt.Println(unsafe.Sizeof(B{1, 1, 1}))  // 16
}
  1. 第一个字段是 int32 类型,unsafe.Sizeof(int32(1))=4,内存占用为4个字节,同时unsafe.Alignof(int32(1)) = 4,内存对齐需保证变量首地址可以被4整除,我们假设地址从0开始,0可以被4整除:
    在这里插入图片描述

  2. 第二个字段是 int32 类型,unsafe.Sizeof(int32(1))=4,内存占用为4个字节,同时unsafe.Alignof(int32(1)) = 4,内存对齐需保证变量首地址可以被4整除,当前地址为4,4可以被4整除:
    在这里插入图片描述

  3. 第三个字段是 int64 类型,unsafe.Sizeof(int64(1))=8,内存占用为8个字节,同时unsafe.Alignof(int64(1)) = 8,内存对齐需保证变量首地址可以被8整除,当前地址为8,8可以被8整除:
    在这里插入图片描述

  4. 所有成员对齐都已经完成,现在我们需要看一下整体对齐规则:unsafe.Alignof(B{}) = 8,即三个变量成员的最大值,内存对齐需要保证该结构体的内存占用是 8 的整数倍,当前内存占用是 16个字节,已经符合规则,最终该结构体的内存占用为 16个字节。

空结构体对齐规则

如果空结构体作为结构体的内置字段:当变量位于结构体的前面和中间时,不会占用内存;当该变量位于结构体的末尾位置时,需要进行内存对齐,内存占用大小和前一个变量的大小保持一致。

type C struct {a struct{}b int64c int64
}type D struct {a int64b struct{}c int64
}type E struct {a int64b int64c struct{}
}type F struct {a int32b int32c struct{}
}func main() {fmt.Println(unsafe.Sizeof(C{})) // 16fmt.Println(unsafe.Sizeof(D{})) // 16fmt.Println(unsafe.Sizeof(E{})) // 24fmt.Println(unsafe.Sizeof(F{})) // 12
}

参考:https://juejin.cn/post/7077833959047954463

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/15650.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器视觉-硬件

机器视觉-硬件 镜头焦距凸透镜焦点不止一个相机镜头由多个镜片组成对焦和变焦 镜头光圈光圈的位置光圈系数F 镜头的景深景深在光路中的几何意义 远心镜头远心镜头的种类远心镜头特性应用场景 镜头的分辨率镜头反差镜头的MTF曲线镜头的靶面尺寸镜头的几何相差相机镜头接口螺纹接…

个人手里有一批宽带资源,想跑PCDN 如何做?

网友问我手里有一批宽带资源,想要跑PCDN该如何做,可以按照以下步骤操作: 了解PCDN的基本原理和市场需求。PCDN(Peer-to-Content Delivery Network)是一种基于P2P技术的内容分发网络,通过将用户设备上的空闲…

javas-core VS java-object-diff

对照工具选择 javas-core 和 java-object-diff ,对比demo https://github.com/kofgame/objectdiff-vs-javers,都为同源对比,都支持嵌套对象。 使用JMH测试方法进行性能测试,使用题库的QuestionResponseVO对象来进行对照对比,进行…

【Python搞定车载自动化测试】——Python基于Pytest框架实现UDS诊断自动化(含Python源码)

系列文章目录 【Python搞定车载自动化测试】系列文章目录汇总 文章目录 系列文章目录💯💯💯 前言💯💯💯一、环境搭建1.软件环境2.硬件环境 二、目录结构三、源码展示1.诊断基础函数方法2.诊断业务函数方法…

深入探索Python基础:两个至关重要的函数

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、初学者的基石:print与input函数 二、类型转换:从字符串到浮点数…

第十四节:带你梳理Vue2:filters过滤器

过滤器是什么? 过滤器是一种在模板中处理数据的便捷方式, 会经常在其他模板语言中见到, 他们特别适合对字符串和数字进行简单的显示变化. 1. 通过案例理解过滤器 示例: 对于数字价格处理 1.1 Mastache语法中处理价格数字 <div id"app"><!-- 正常处理 -…

【完整解析】2024电工杯数学建模A题论文与代码

园区微电网风光储协调优化配置 1 论文2 代码分享2.1 第三题第一问 3 数据与代码 1 论文 2 代码分享 2.1 第三题第一问 function anssq3w1ObjFun(ttt,id); %ttttt(1); tt[750,0,0,1000,600,500]; limttt(1)*200; limmttt(2)*500*0.9-ttt(2)*500*0.1; t1ttt(3)*1000;t2ttt(4)*1…

设计模式--模板方法模式

模板方法模式是一种行为设计模式&#xff0c;它定义了一个操作中的算法的骨架&#xff0c;而将一些步骤延迟到子类中实现。这种模式在许多应用场景中非常有用&#xff0c;例如在实现算法的通用框架、代码重用、封装实现细节以及确保算法的正确执行时。 应用场景 实现算法的通…

ASP+ACCESS多功能论坛程序设计

摘 要 随着计算机的广泛应用&#xff0c;人们已经对网络不再感到陌生。在科技飞速发展的今天&#xff0c;电脑信息技术与各行各业进行了有效的结合。人们在网上可以进行网上购物&#xff0c;网上交友&#xff0c;电子商务&#xff0c;网络营效等等。面对强大的网络功能&#x…

通过Kafka-Logger插件收集流量进行漏洞扫描

通过Kafka-Logger插件收集流量进行漏洞扫描 方案 可以通过APISIX kafka-logger 插件将日志作为 JSON 对象推送到 Apache Kafka 集群中&#xff0c;消费Kafka里的数据格式化后添加到MySQL。 方案详情 1、登录APISIX&#xff0c;启用内置的kafka-logger 插件&#xff1a; 2…

从 0 实现一个文件搜索工具 (Java 项目)

背景 各文件系统下, 都有提供文件查找的功能, 但是一般而言搜索速度很慢 本项目仿照 everything 工具, 实现本地文件的快速搜索 实现功能 选择指定本地目录, 根据输入的信息, 进行搜索, 显示指定目录下的匹配文件信息文件夹包含中文时, 支持汉语拼音搜索 (全拼 / 首字母匹配…

DiffMap:首个利用LDM来增强高精地图构建的网络

论文标题&#xff1a; DiffMap: Enhancing Map Segmentation with Map Prior Using Diffusion Model 论文作者&#xff1a; Peijin Jia, Tuopu Wen, Ziang Luo, Mengmeng Yang, Kun Jiang, Zhiquan Lei, Xuewei Tang, Ziyuan Liu, Le Cui, Kehua Sheng, Bo Zhang, Diange Ya…

深入分析 Android Activity (四)

深入分析 Android Activity (四) 1. Activity 的生命周期详解 Activity 的生命周期方法提供了一组回调&#xff0c;使开发者能够在不同状态下执行相应的逻辑。了解这些方法有助于开发者管理资源和确保应用程序的行为一致。 1.1 onCreate onCreate 是 Activity 的入口点&…

解决go install 网络问题

rootiZbp1hiqzlhh6w05gloffgZ:~# go install mvdan.cc/garblelatest go: mvdan.cc/garblelatest: module mvdan.cc/garble: Get "https://proxy.golang.org/mvdan.cc/garble/v/list": dial tcp 172.217.160.81:443: i/o timeout解决方法 更换阿里代理 rootiZbp1hiq…

浅论未来 IT 和财务结合的趋势

前言 会计核算企业各类业务单据&#xff0c;所有业务部门的数据都会汇流到财务部来&#xff0c;所以会计其实是企业的数据中心&#xff1b;而 IT 技术正是处理数据的利器&#xff0c;可以将重复的流程自动化&#xff0c;还能将财务数据可视化&#xff1b;因此&#xff0c;两者…

docker image prune -f 命令什么用途

docker image prune -f 命令用于清理系统中未被使用的 Docker 镜像。具体来说&#xff0c;它会删除那些未被任何容器使用的悬空镜像&#xff08;dangling images&#xff09;&#xff0c;从而释放磁盘空间。 以下是 docker image prune -f 命令的具体用途和作用&#xff1a; …

SPI通信(STM32)

一、SPI通信 &#xff11;、SPI&#xff08;Serial Peripheral Interface&#xff09;是由Motorola公司开发的一种通用数据总线 &#xff12;、四根通信线&#xff1a;SCK&#xff08;Serial Clock&#xff09;、MOSI&#xff08;Master Output Slave Input&#xff09;、MIS…

【计算理论】【《计算理论导引(原书第3版)》笔记】第〇章:绪论

文章目录 [toc]第〇章&#xff1a;绪论0.1|自动机、可计算性与复杂性计算复杂性理论可计算性理论自动机理论 0.2|数学概念和术语集合关系等价关系 图简单路径连通图圈强连通图 字符串和语言字母表上的字符串空串 w w w的反转&#xff08;倒序&#xff09; x x x和 y y y的连接字…

esp32-idf 开发踩坑记录

现象 直接使用原始命令编译idf.py build 但是提示idf 版本错误 卸载旧版本 编译出错build 问题 然后删除编译文件后&#xff0c;重新编译&#xff0c;还是出错 解决方法1 最后发现是因为项目所在文件夹有中文目录&#xff0c;把项目迁移到英文目录后&#xff0c;重新编译&a…

打破传统相亲模式,这几款靠谱的相亲软件助你脱单

相亲软件在当今社会已经变得越来越普遍&#xff0c;市面上有众多相亲软件可供选择&#xff0c;但哪些相亲软件好用呢&#xff1f;下面介绍几款备受好评的相亲软件&#xff0c;帮助你在茫茫人海中找到那个对的人&#xff01; 1、一伴婚恋 这个APP它最大的优点就是信息真实靠谱…