I.MX6ULL Linux C语言开发环境搭建(点灯实验)

系列文章目录

I.MX6ULL Linux C语言开发


I.MX6ULL Linux C语言开发

  • 系列文章目录
  • 一、前言
  • 二、硬件原理分析
  • 三、构建步骤
    • 一、 C语言运行环境构建
    • 二、软件编写
    • 三、链接脚本
  • 四、实验程序编写
  • 五、编译下载验证


一、前言

汇编语言编写 LED 灯实验,但是实际开发过程中汇编用的很少,大部分都是 C 语言开发。汇编只是用来完成 C 语言环境的初始化(比如初始化 DDR、
设置堆栈指针 SP 等等)。用汇编来完成 C 语言环境的初始化工作,然后从汇编跳转到 C 语言代码里面去,一般都是进入 main 函数。所以我们有两部分文件要做:
①、汇编文件
汇编文件只是用来完成 C 语言环境搭建。
②、C 语言文件
C 语言文件就是完成我们的业务层代码的,其实就是我们实际例程要完成的功能。
其实 STM32 也是这样的,以 STM32F103 为例,其启动文件 startup_stm32f10x_hd.s 这个汇编文件就是完成 C 语言环境搭建的,当然还有一些其他的处理,比如中断向量表等等。当 startup_stm32f10x_hd.s 把 C 语言环境初始化完成以后就会进入 C 语言环境。


二、硬件原理分析

I.MX6UALPHA 开发板上有一个 LED 灯,原理图如下图所示;
在这里插入图片描述

从图可以看出,LED0 接到了 GPIO_3 上,GPIO_3 就是 GPIO1_IO03,当 GPIO1_IO03输出低电平(0)的时候发光二极管 LED0 就会导通点亮,当 GPIO1_IO03 输出高电平(1)的时候发光二极管 LED0 不会导通,因此 LED0 也就不会点亮。所以 LED0 的亮灭取决于 GPIO1_IO03的输出电平,输出 0 就亮,输出 1 就灭。


三、构建步骤

一、 C语言运行环境构建

1.设置处理器模式
设置6ULL处于SVC模式 下。设置CPSR寄存器的bit4-0,也就是M[4:0]为10011=0X13。读写状态寄存器需要用到MRS和MSR指令。MRS将CPSR寄存器数据读出到通用寄存器里面,MSR指令将通用寄存器的值写入到CPSR寄存器里面去。
CPSR寄存器如图所示
在这里插入图片描述

处理器模式位(CPSR寄存器的bit4-0)

在这里插入图片描述

2.设置sp指针(栈指针,C语言运行需要出栈与入栈)
Sp可以指向内部RAM,也可以指向DDR,我们将其指向DDR。DDR 512MB的范围0x80000000~0x9FFFFFFF。栈大小,0x200000=2MB(常用设置)。处理器栈增长方式,对于A7而言是向下增长的。设置sp指向0x80200000。

3.跳转到C语言
使用b指令,跳转到C语言函数,比如main函数。

二、软件编写

三、链接脚本

链接脚本描述了要连接的文件,以及链接顺序,和链接首地址

四、实验程序编写

新建 VScode 工程,工程名字为“ledc”,新建三个文件:start.S、main.c 和 main.h。其中 start.S是汇编文件,main.c 和 main.h 是 C 语言相关文件。

start.s 文件代码:

.global _start /* 全局标号 */
/** 描述: _start 函数,程序从此函数开始执行,此函数主要功能是设置 C* 运行环境。
*/
_start:/* 进入 SVC 模式 */mrs r0, cpsrbic r0, r0, #0x1f /* 将 r0 的低 5 位清零,也就是 cpsr 的 M0~M4 */orr r0, r0, #0x13 /* r0 或上 0x13,表示使用 SVC 模式 */msr cpsr, r0 /* 将 r0 的数据写入到 cpsr_c 中 */ldr sp, =0X80200000 /* 设置栈指针 */b main /* 跳转到 main 函数 */

main.h文件代码:

#ifndef __MAIN_H
#define __MAIN_H
/******************************************************************
描述 : 时钟 GPIO1_IO03 相关寄存器地址定义。
/* 
* CCM 相关寄存器地址
*/
#define CCM_CCGR0 *((volatile unsigned int *)0X020C4068)
#define CCM_CCGR1 *((volatile unsigned int *)0X020C406C)
#define CCM_CCGR2 *((volatile unsigned int *)0X020C4070)
#define CCM_CCGR3 *((volatile unsigned int *)0X020C4074)
#define CCM_CCGR4 *((volatile unsigned int *)0X020C4078)
#define CCM_CCGR5 *((volatile unsigned int *)0X020C407C)
#define CCM_CCGR6 *((volatile unsigned int *)0X020C4080)
/* 
* IOMUX 相关寄存器地址
*/
#define SW_MUX_GPIO1_IO03 *((volatile unsigned int *)0X020E0068)
#define SW_PAD_GPIO1_IO03 *((volatile unsigned int *)0X020E02F4)
/* 
* GPIO1 相关寄存器地址
*/
#define GPIO1_DR *((volatile unsigned int *)0X0209C000)
#define GPIO1_GDIR *((volatile unsigned int *)0X0209C004)
#define GPIO1_PSR *((volatile unsigned int *)0X0209C008)
#define GPIO1_ICR1 *((volatile unsigned int *)0X0209C00C)
#define GPIO1_ICR2 *((volatile unsigned int *)0X0209C010)
#define GPIO1_IMR *((volatile unsigned int *)0X0209C014)
#define GPIO1_ISR *((volatile unsigned int *)0X0209C018)
#define GPIO1_EDGE_SEL *((volatile unsigned int *)0X0209C01C)
#endif

main.c文件代码:

#include "main.h"
/*
* @description : 使能 I.MX6U 所有外设时钟
* @param : 无
* @return : 无
*/
void clk_enable(void)
{
CCM_CCGR0 = 0xffffffff;
CCM_CCGR1 = 0xffffffff;
CCM_CCGR2 = 0xffffffff;
CCM_CCGR3 = 0xffffffff;
CCM_CCGR4 = 0xffffffff;
CCM_CCGR5 = 0xffffffff;
CCM_CCGR6 = 0xffffffff;
}/*
* @description : 初始化 LED 对应的 GPIO
* @param : 无
* @return : 无
*/
void led_init(void)
{
/* 1、初始化 IO 复用, 复用为 GPIO1_IO03 */
SW_MUX_GPIO1_IO03 = 0x5; /* 2、配置 GPIO1_IO03 的 IO 属性 
*bit 16:0 HYS 关闭
*bit [15:14]: 00 默认下拉
*bit [13]: 0 kepper 功能
*bit [12]: 1 pull/keeper 使能
*bit [11]: 0 关闭开路输出
*bit [7:6]: 10 速度 100Mhz
*bit [5:3]: 110 R0/6 驱动能力
*bit [0]: 0 低转换率
*/
SW_PAD_GPIO1_IO03 = 0X10B0; /* 3、初始化 GPIO, GPIO1_IO03 设置为输出 */
GPIO1_GDIR = 0X0000008;/* 4、设置 GPIO1_IO03 输出低电平,打开 LED0 */
GPIO1_DR = 0X0;
}/*
* @description : 打开 LED 灯
* @param : 无
* @return : 无
*/
void led_on(void)
{
/* 
* 将 GPIO1_DR 的 bit3 清零 
*/
GPIO1_DR &= ~(1<<3);
}/*
* @description : 关闭 LED 灯
* @param : 无
* @return : 无
*/
void led_off(void)
{
/* 
* 将 GPIO1_DR 的 bit3 置 1
*/
GPIO1_DR |= (1<<3);
}/*
* @description : 短时间延时函数
* @param - n : 要延时循环次数(空操作循环次数,模式延时)
* @return : 无
*/
void delay_short(volatile unsigned int n)
{
while(n--){}
}
/*
* @description : 延时函数,在 396Mhz 的主频下延时时间大约为 1ms
* @param - n : 要延时的 ms 数
* @return : 无
*/
void delay(volatile unsigned int n)
{while(n--){delay_short(0x7ff);}
}/*
* @description : main 函数
* @param : 无
* @return : 无
*/
int main(void)
{clk_enable(); /* 使能所有的时钟 */led_init(); /* 初始化 led */while(1) /* 死循环 */{ led_off(); /* 关闭 LED */delay(500); /* 延时大约 500ms */led_on(); /* 打开 LED */delay(500); /* 延时大约 500ms */}return 0;
}

五、编译下载验证

编写 Makefile

新建 Makefile 文件:

1 objs := start.o main.o
2 
3 ledc.bin:$(objs)
4 arm-linux-gnueabihf-ld -Ttext 0X87800000 -o ledc.elf $^
5 arm-linux-gnueabihf-objcopy -O binary -S ledc.elf $@
6 arm-linux-gnueabihf-objdump -D -m arm ledc.elf > ledc.dis
7 
8 %.o:%.s
9 arm-linux-gnueabihf-gcc -Wall -nostdlib -c -o $@ $<
10 
11 %.o:%.S
12 arm-linux-gnueabihf-gcc -Wall -nostdlib -c -o $@ $<
13 
14 %.o:%.c
15 arm-linux-gnueabihf-gcc -Wall -nostdlib -c -o $@ $<
16 
17 clean:
18 rm -rf *.o ledc.bin ledc.elf ledc.dis

第 1 行定义了一个变量 objs,objs 包含着要生成 ledc.bin 所需的材料:start.o 和 main.o,也就是当前工程下的 start.s 和 main.c 这两个文件编译后的.o 文件。这里要注意 start.o 一定要放到最前面!因为 start.o 是最先要执行的文件!
第 3 行就是默认目标,目的是生成最终的可执行文件 ledc.bin,ledc.bin 依赖 start.o 和 main.o如果当前工程没有 start.o 和 main.o 的时候就会找到相应的规则去生成 start.o 和 main.o。比如start.o 是 start.s 文件编译生成的,因此会执行第 8 行的规则。
第 4 行是使用 arm-linux-gnueabihf-ld 进行链接,链接起始地址是 0X87800000,但是这一行用到了自动变量$^$^的意思是所有依赖文件的集合,在这里就是 objs 这个变量的值:start.o 和 main.o。链接的时候 start.o 要链接到最前面,因为第一行代码就是 start.o 里面的,因此这一行就相当于:

arm-linux-gnueabihf-ld -Ttext 0X87800000 -o ledc.elf start.o main.o

第 5 行使用 arm-linux-gnueabihf-objcopy 来将 ledc.elf 文件转为 ledc.bin,本行也用到了自动变量$@$@的意思是目标集合,在这里就是“ledc.bin”,那么本行就相当于:

arm-linux-gnueabihf-objcopy -O binary -S ledc.elf ledc.bin

第 6 行使用 arm-linux-gnueabihf-objdump 来反汇编,生成 ledc.dis 文件。
第 8~15 行就是针对不同的文件类型将其编译成对应的.o 文件,其实就是汇编.s(.S)和.c 文件,比如 start.s 就会使用第 8 行的规则来生成对应的 start.o 文件。第 9 行就是具体的命令,这行也用到了自动变量$@$<,其中$<的意思是依赖目标集合的第一个文件。比如start.s 要编译成 start.o 的话第 8 行和第 9 行就相当于:

start.o:start.sarm-linux-gnueabihf-gcc -Wall -nostdlib -c -O2 -o start.o start.s

第 17 行就是工程清理规则,通过命令“make clean”就可以清理工程。
Makefile 文件就讲到这里,我们可以将整个工程拿到 Ubuntu 下去编译,编译完成以后可以使用软件 imxdownload 将其下载到 SD 卡中,命令如下:

chmod 777 imxdownload //给予 imxdownoad 可执行权限,一次即可
./imxdownload ledc.bin /dev/sdd //下载到 SD 卡中, 不能烧写到/dev/sda 或 sda1 设备里面!

链接脚本
在上面的 Makefile 中我们链接代码的时候使用如下语句:

arm-linux-gnueabihf-ld -Ttext 0X87800000 -o ledc.elf $^

上面语句中我们是通过“-Ttext”来指定链接地址是 0X87800000 的,这样的话所有的文件都会链接到以 0X87800000 为起始地址的区域。但是有时候我们很多文件需要链接到指定的区域,或者叫做段里面,比如在 Linux 里面初始化函数就会放到 init 段里面。因此我们需要能够自定义一些段,这些段的起始地址我们可以自由指定,同样的我们也可以指定一个文件或者函数应该存放到哪个段里面去。要完成这个功能我们就需要使用到链接脚本,链接脚本主要用于链接的,用于描述文件应该如何被链接在一起形成最终的可执行文件。其主要目的是描述输入文件中的段如何被映射到输出文件中,并且控制输出文件中的内存排布。
比如我们编译生成的文件一般都包含 text 段、data 段等等。链接脚本的语法很简单,就是编写一系列的命令,这些命令组成了链接脚本,每个命令是一个带有参数的关键字或者一个对符号的赋值,可以使用分号分隔命令。像文件名之类的字符串可以直接键入,也可以使用通配符“*”。最简单的链接脚本可以只包含一个命令“SECTIONS”,在这一个“SECTIONS”里面来描述输出文件的内存布局。一般编译出来的代码都包含在 text、data、bss 和 rodata 这四个段内,假设现在的代码要被链接到 0X10000000 这个地址,数据要被链接到 0X30000000 这个地方,下面就是完成此功能的最简单的链接脚本(案例):

1 SECTIONS{
2 . = 0X10000000;
3 .text : {*(.text)}
4 . = 0X30000000;
5 .data ALIGN(4) : { *(.data) } 
6 .bss ALIGN(4) : { *(.bss) } 
7 }

第 1 行我们先写了一个关键字“SECTIONS”
第 2 行对一个特殊符号“.”进行赋值,“.”在链接脚本里面叫做定位计数器,默认的定位计数器为 0。我们要求代码链接到以 0X10000000 为起始地址的地方,因此这一行给“.”赋值0X10000000,表示以 0X10000000 开始,后面的文件或者段都会以 0X10000000 为起始地址开始链接。
第 3 行的“.text”是段名,后面的冒号是语法要求,冒号后面的大括号里面可以填上要链接到“.text”这个段里面的所有文件,*(.text)中的*是通配符,表示所有输入文件的.text段都放到“.text”中。
第 4 行,我们的要求是数据放到 0X30000000 开始的地方,所以我们需要重新设置定位计数器“.”,将其改为 0X30000000。如果不重新设置的话会怎么样?假设“.text”段大小为 0X10000,那么接下来的.data 段开始地址就是 0X10000000+0X10000=0X10010000,这明显不符合我们的要求。所以我们必须调整定位计数器为 0X30000000。
第 5 行跟第 3 行一样,定义了一个名为“.data”的段,然后所有文件的“.data”段都放到这里面。但是这一行多了一个“ALIGN(4)”,这是什么意思呢?这是用来对“.data”这个段的起始地址做字节对齐的,ALIGN(4)表示 4 字节对齐。也就是说段“.data”的起始地址要能被 4 整除,一般常见的都是 ALIGN(4)或者 ALIGN(8),也就是 4 字节或者 8 字节对齐。
第 6 行定义了一个“.bss”段,所有文件中的“.bss”数据都会被放到这个里面,“.bss”数据就是那些定义了但是没有被初始化的变量。

上面就是链接脚本最基本的语法格式,我们接下来就按照这个基本的语法格式来编写我们本试验的链接脚本,我们本试验的链接脚本要求如下:
①、链接起始地址为 0X87800000。
②、start.o 要被链接到最开始的地方,因为 start.o 里面包含这第一个要执行的命令。
根据要求,在 Makefile 同目录下新建一个名为“imx6ul.lds”的文件:

1 SECTIONS{
2 . = 0X87800000;
3 .text :
4 {
5 start.o 
6 main.o 
7 *(.text)//所有程序编译出来都属于text段,比如main.o
8 }
9 .rodata ALIGN(4) : {*(.rodata*)} 
10 .data ALIGN(4) : { *(.data) } 
11 __bss_start = .; 
12 .bss ALIGN(4) : { *(.bss) *(COMMON) } 
13 __bss_end = .;
14 }

上面的链接脚本文件和案例代码基本一致的,第 2 行设置定位计数器为0X87800000,因为我们的链接地址就是0X87800000。
第5行设置链接到开始位置的文件为start.o,因为 start.o 里面包含着第一个要执行的指令,所以一定要链接到最开始的地方。第 6 行是 main.o这个文件,其实可以不用写出来,因为 main.o 的位置就无所谓了,可以由编译器自行决定链接位置。
在第 11、13 行有“__bss_start”和“__bss_end”这两个东西?这个是什么呢?“__bss_start”
和“__bss_end”是符号,第 11、13 这两行其实就是对这两个符号进行赋值,其值为定位符“.”,这两个符号用来存.bss 段的起始地址和结束地址。前面说了.bss 段是定义了但是没有被初始化的变量,我们需要手动对.bss 段的变量清零的,因此我们需要知道.bss 段的起始和结束地址,这样我们直接对这段内存赋 0 即可完成清零。通过第 11、13 行代码,.bss 段的起始地址和结束地址就保存在了“__bss_start”和“__bss_end”中,我们就可以直接在汇编或者 C 文件里面使用这两个符号

修改 Makefile文件:
之前已经编写好了链接脚本文件:imx6ul.lds,我们肯定是要使用这个链接脚本文件的,将 Makefile 中的如下一行代码

arm-linux-gnueabihf-ld -Ttext 0X87800000 -o ledc.elf $^

改为:

arm-linux-gnueabihf-ld -Timx6ul.lds -o ledc.elf $^

其实就是将-T 后面的 0X87800000 改为 imx6ul.lds,表示使用 imx6ul.lds 这个链接脚本文件。修改完成以后使用新的 Makefile 和链接脚本文件重新编译工程,编译成功以后就可以烧写到 SD 卡中验证了。
下载验证
使用软件 imxdownload 将编译出来的 ledc.bin 烧写到 SD 卡中,命令如下:

chmod 777 imxdownload //给予 imxdownload 可执行权限,一次即可
./imxdownload ledc.bin /dev/sdd //烧写到 SD 卡中,不能烧写到/dev/sda 或 sda1 设备里面

烧写成功以后将 SD 卡插到开发板的 SD 卡槽中,然后复位开发板,如果代码运行正常的
话 LED0 就会以 500ms 的时间间隔亮灭。


END

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/15182.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go语言的内存泄漏如何检测和避免?

文章目录 Go语言内存泄漏的检测与避免一、内存泄漏的检测1. 使用性能分析工具2. 使用内存泄漏检测工具3. 代码审查与测试 二、内存泄漏的避免1. 使用defer关键字2. 使用垃圾回收机制3. 避免循环引用4. 使用缓冲池 Go语言内存泄漏的检测与避免 在Go语言开发中&#xff0c;内存泄…

【已解决】C#设置Halcon显示区域Region的颜色

前言 在开发过程中&#xff0c;突然发现我需要显示的筛选区域的颜色是白色的&#xff0c;如下图示&#xff0c;这对我们来说不明显会导致我的二值化筛选的时候存在误差&#xff0c;因此我们需要更换成红色显示这样的话就可以更加的明显&#xff0c;二值化筛选更加的准确。 解…

java: 无法访问org.springframework.ldap.core.LdapTemplate

完整错误&#xff1a; java: 无法访问org.springframework.ldap.core.LdapTemplate错误的类文件: /E:/apache-maven-3.6.3/repository/org/springframework/ldap/spring-ldap-core/3.2.3/spring-ldap-core-3.2.3.jar!/org/springframework/ldap/core/LdapTemplate.class类文件具…

《2024年中国机器人行业投融资报告》| 附下载

近年来&#xff0c;国内机器人行业取得了显著的技术进步&#xff0c;包括人工智能、感知技术、自主导航等技术方面的突破&#xff0c;使得机器人能够更好地适应复杂环境和任务需求&#xff0c;带动了机器人行业加快发展。 当然&#xff0c;技术的进步是外在驱动因素&#xff0…

探索集合python(Set)的神秘面纱:它与字典有何不同?

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、集合&#xff08;Set&#xff09;与字典&#xff08;Dictionary&#xff09;的初识 1. …

L2-038 病毒溯源

详解代码 #include <iostream> #include <cstring> #include <algorithm>using namespace std;const int N 10010,M10010;int n; int h[N], e[M], ne[M], idx;//邻接表,h表示顶点&#xff0c;e表示当前边的终点&#xff0c;ne表示下一条边&#xff0c;idx当…

海外动态IP代理如何提高效率?

动态住宅IP代理之所以能够有效提升数据爬取的效率和准确性&#xff0c;主要归功于其提供的IP地址具有高度的匿名性和真实性。这些IP地址来自于真实的用户网络&#xff0c;因此相比于数据中心IP&#xff0c;它们更不容易被网站的安全系统标识为爬虫。此外&#xff0c;由于IP地址…

【vue-1】vue入门—创建一个vue应用

最近在闲暇时间想学习一下前端框架vue&#xff0c;主要参考以下两个学习资料。 官网 快速上手 | Vue.js b站学习视频 2.创建一个Vue3应用_哔哩哔哩_bilibili 一、创建一个vue3应用 <!DOCTYPE html> <html lang"en"> <head><meta charset&q…

NodeJS安装并生成Vue脚手架(保姆级)

文章目录 NodeJS下载配置环境变量Vue脚手架生成Vue脚手架创建项目Vue项目绑定git 更多相关内容可查看 NodeJS下载 下载地址&#xff1a;https://nodejs.org/en 下载的速度应该很快&#xff0c;下载完可以无脑安装&#xff0c;以下记得勾选即可 注意要记住自己的安装路径&…

【Linux】简单模拟C语言文件标准库FILE

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前正在学习c和算法 ✈️专栏&#xff1a;Linux &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章有啥瑕疵&#xff0c;希望大佬指点一二 如果文章对…

R可视化:可发表的Y轴截断图

Y轴截断图by ggprism Y轴截断图by ggprism 介绍 ggplot2绘制Y轴截断图by ggprism加载R包 knitr::opts_chunk$set(message = FALSE, warning = FALSE)library(tidyverse) library(ggprism) library(patchwork)rm(list = ls()) options(stringsAsFactors = F) options(future.…

Go语言的中间件(middleware)是如何实现的?

文章目录 Go语言的中间件&#xff08;Middleware&#xff09;是如何实现的&#xff1f;中间件的工作原理中间件的实现步骤示例代码总结 Go语言的中间件&#xff08;Middleware&#xff09;是如何实现的&#xff1f; 在Go语言中&#xff0c;中间件&#xff08;Middleware&#…

springboot实现多开发环境匹配置(超级简洁没废话)

首先logbok-spring.xml里面的内容 <?xml version"1.0" encoding"UTF-8"?> <configuration><!-- 开发、测试环境 --><springProfile name"dev,test"><include resource"org/springframework/boot/logging/log…

Java并发面试题,多线程通关秘籍

【知识点记录】- 不能不知道的知识点 &#x1f604;生命不息&#xff0c;写作不止 &#x1f525; 继续踏上学习之路&#xff0c;学之分享笔记 &#x1f44a; 总有一天我也能像各位大佬一样 &#x1f3c6; 博客首页 怒放吧德德 To记录领地 &#x1f31d;分享学习心得&#xf…

算法设计与分析

一、分治法 二、回溯法 三、贪心法 四、动态规划法 分治法一分而治之 对于一个规模为n的问题&#xff0c;若该问题可以容易地解决&#xff08;比如说规模n较小&#xff09;则直接解决&#xff0c;否则将其分解为k个规模较小的子问题&#xff0c;这些子问题互相独立且与原问题形…

【Linux】关于获取进程退出状态中的core dump标志补充

通过 wait/waitpid 可以获取子进程的退出状态, 从而判断其退出结果. 记录退出状态的 int 变量 status 的使用情况如下图所示: 如果是收到信号终止的话, 低 7 位为收到的终止信号, 而低第 8 位为 core dump 标志, core dump 标志有什么用呢? core dump 标志只存 0/1, 表示是否…

printf 模仿slf4j 的log.xxx效果

printf 模仿slf4j 的log.xxx效果 简介期待的效果颜色遇到的问题实际的效果代码实现使用效果图 简介 突然想玩一玩&#xff0c;能不能用printf实现slf4j里 的log.xxx 的效果。 性能是完全不考虑的&#xff0c;只要功能可用就好。 期待的效果 类似:info("这是第{}条日志…

ffmpeg-webrtc(metartc)给ffmpeg添加webrtc协议

这个是使用metrtc的库为ffmpeg添加webrtc传输协议&#xff0c;目前国内还有一个这样的开源项目&#xff0c;是杨成立大佬&#xff0c;大师兄他们在做&#xff0c;不过wili页面维护的不好&#xff0c;新手不知道如何使用&#xff0c;我专门对它做过介绍&#xff0c;另一篇博文&a…

不同类型水表计量技术的优缺点

1.单流束水表 1.1优点 (1)耐受悬浮固体。适用于硬水或悬浮颗粒物。 (2)多样性&#xff0c;可用性&#xff0c;容易找到需要的合适的表型。 (3)技术可靠&#xff0c;已使用了数十年。 (4)体积小&#xff0c;可以安装在狭小的空间里。 (5)13mm、15mm、20mm水表可能是市面…

CTFHUB技能树——SSRF(二)

目录 上传文件 ​FastCGI协议 Redis协议 上传文件 题目描述&#xff1a;这次需要上传一个文件到flag.php了.祝你好运 index.php与上题一样&#xff0c;使用POST请求的方法向flag.php传递参数 //flag.php页面源码 <?phperror_reporting(0);if($_SERVER["REMOTE_ADDR&…