基于大语言模型的应用

在AI领域,大语言模型已成为备受瞩目的焦点,尤其在自然语言处理(NLP)领域,其应用愈发广泛。BLM作为一种多任务语言建模方法,旨在构建一个具备多功能的强大模型。在给定文本和查询条件下,该模型能够充分利用上下文中的丰富信息,如查询内容、特定任务或领域知识,以生成准确而恰当的答案。这一特性使得BLM在优化自然语言处理任务中展现出巨大潜力。

文本分类

文本分类是自然语言处理中非常重要的一部分,因为它可以帮助我们在搜索中查找相关内容。文本分类是通过将文本按照一定的特征划分为不同的类别,比如常见的是将新闻文章分为科技、经济、军事等类别。

由于传统方法基于人工标注文本进行分类,因此需要大量人工标注样本,这使得文本分类的效率非常低,也增加了错误分类的可能性。随着深度学习技术的发展,使用模型进行文本分类已经成为可能。比如 TensorFlow、 PyTorch等都是常用的文本分类框架。

文本生成

文本生成任务可以在文本生成(Textual Generation)中使用,其目的是生成与输入文本相关的句子,如回复、摘要、提问等。NLP中的文本生成任务通常与其他任务紧密结合。NLP中的文本生成任务通常需要使用大规模预训练模型进行训练,例如 BERT、GPT-2等。在预训练阶段,这些模型将使用大量语料库对其进行训练。训练完成后,模型可以使用少量标记数据对其进行微调,以获得更准确的结果。

信息检索

信息检索(Information Retrieval)是将一组可供检索的数据,以文本形式组织起来,从而便于用户获取想要的信息的过程。例如,用户需要查询某个公司的某个产品或服务。

对于大多数用户来说,他们对公司的了解通常来自于公司网站、新闻和社交媒体等渠道。在这种情况下,将信息从这些渠道中提取出来,可能是非常困难的。现在有很多技术可以帮助用户获取公司信息。

通过利用 BLM来进行信息检索,用户可以轻松地将一组可供检索的文本从一个给定的网页中提取出来。在这种情况下,用户只需要输入检索词和问题就可以从一系列网站和新闻中提取相关信息。

问答系统

在当前的问答系统中,主要是基于神经网络模型来构建。对于 BLM而言,它能够以更高的准确率、更好的准确性、更高的效率生成答案。为了达到这些目标,许多 NLP模型都基于深度学习技术。

基于 BLM的问答系统主要是基于模型对问题进行语义理解,然后返回答案。问题通常来自于搜索引擎、分类系统和事实数据库等网站。要构建一个成功的问答系统,必须对自然语言理解有很好的理解,以便从用户提供的文本中获得有用信息。通常,问题可以分为三种类型:事实问题、概念问题和推理问题。

图数据库凭借其前沿的图技术,为大语言模型注入了万亿级的丰富上下文,显著提升了模型的回答准确度,为企业级应用提供了强大的支持。通过引入悦数图数据库,企业能够以更低的费用成本和更短的时间成本,实现大模型落地应用。这不仅优化了企业的运营效率,还提高了决策的准确性,为企业在激烈的市场竞争中赢得了宝贵的时间和资源。未来,随着技术的不断进步和应用的深入拓展,悦数图数据库将继续为大语言模型领域注入新的活力,推动企业级应用走向更加智能、有效的新时代。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/13974.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深度学习】YOLOv8训练,交通灯目标检测

文章目录 一、数据处理二、环境三、训练 一、数据处理 import traceback import xml.etree.ElementTree as ET import os import shutil import random import cv2 import numpy as np from tqdm import tqdmdef convert_annotation_to_list(xml_filepath, size_width, size_he…

海山数据库(He3DB)代理ProxySQL使用详解:(二)功能实测

读写分离实测 ProxySQL官方demo演示了三种读写分离的方式:使用不同的端口进行读写分离、使用正则表达式进行通用的读写分离、使用正则和digest进行更智能的读写分离。最后一种是针对特定业务进行的优化调整,也可将其归结为第二种方式,下边分…

MySQL备份与日志练习

1、创建对mysql数据库test1的定时备份任务,频率是每周一的2点 create database test1;crond -e0 2 * * 1 mysqldump -u root -pAdmin123 --databases test1 > /opt/test1.sql2、test1中有t1、t2、t3三张表,要求只备份t2这张表 mysqldump -u root -pA…

Python 机器学习 基础 之 数据表示与特征工程 【单变量非线性变换 / 自动化特征选择/利用专家知识】的简单说明

Python 机器学习 基础 之 数据表示与特征工程 【单变量非线性变换 / 自动化特征选择/利用专家知识】的简单说明 目录 Python 机器学习 基础 之 数据表示与特征工程 【单变量非线性变换 / 自动化特征选择/利用专家知识】的简单说明 一、简单介绍 二、单变量非线性变换 三、自…

知识图谱数据预处理笔记

知识图谱数据预处理笔记 0. 引言1. 笔记1-1. \的转义1-2. 特殊符号的清理1-3. 检查结尾是否正常1-4. 检查<>是否存在1-5. 两端空格的清理1-6. 检查object内容长时是否以<开始 0. 引言 最近学习知识图谱&#xff0c;发现数据有很多问题&#xff0c;这篇笔记记录遇到的…

软件设计师备考笔记(九):数据库技术基础

文章目录 一、基本概念二、数据模型&#xff08;一&#xff09;基本概念&#xff08;二&#xff09;E-R模型&#xff08;三&#xff09;数据模型 三、关系代数&#xff08;一&#xff09;关系数据库的基本概念&#xff08;二&#xff09;五种基本的关系代数运算&#xff08;三&…

React hooks - forwardRef+useImperativeHandle

forwardRefuseImperativeHandle React.forwardRef用法useImperativeHandle用法第三个参数的用法 React.forwardRef与useImperativeHandle配合使用注意事项 React.forwardRef用法 1.创建一个 能够接受到ref属性的React 组件。 ref 用来获取实例&#xff0c;但函数组件不存在实例…

bugku 网络安全事件应急响应

开启靶场&#xff1a; 开始实验&#xff1a; 使用Xshell登录服务器&#xff0c;账号及密码如上图。 1、提交攻击者的IP地址 WP: 找到服务器日志路径&#xff0c;通常是在/var/log/&#xff0c;使用cd /var/log/&#xff0c;ls查看此路径下的文件. 找到nginx文件夹。 进入ng…

hyperopt、optuna、gridsearch、randomsearch自动调参

开始使⽤hyperopt进⾏⾃动调参 algo partial(tpe.suggest, n_startup_jobs1) best fmin(lightgbm_factory, space, algoalgo, max_evals20, pass_expr_memo_ctrlNone) RMSE lightgbm_factory(best) print(‘best :’, best) print(‘best param after transform :’) argsD…

【Jenkins】Centos7安装Jenkins(环境:JDK11,tomcat9,maven3.8)

目录 Jenkins部署环境Maven安装1.上传安装包2.解压3.配置Maven环境变量4.使配置文件立即生效5.校验Maven安装6.Maven配置阿里云仓库7.Maven配置依赖下载位置 Git安装安装监测安装 JDK17安装1.查看旧版本JDK2.卸载旧版本JDK3.查看是否卸载干净4.创建java目录5.下载JDK11安装包6.…

“开源与闭源大模型:数据隐私、商业应用与社区参与的多维比较“

开源大模型和闭源大模型各有其优势和局限&#xff0c;它们在数据隐私、商业应用和社区参与方面的表现也各有不同。以下是对这三个方面进行的分析&#xff1a; 方向一&#xff1a;数据隐私 开源大模型&#xff1a; 优点&#xff1a;开源模型通常允许用户和开发者查看和修改代…

Excel中Lookup函数

#Excel查找函数最常用的是Vlookup&#xff0c;而且是经常用其精确查找。Lookup函数的强大之处在于其“二分法”的原理。 LOOKUP&#xff08;查找值&#xff0c;查找区域&#xff08;Vector/Array&#xff09;&#xff0c;[返回结果区域]&#xff09; 为什么查找区域必须升序/…

一种处理checked exception的方法

一种处理checked exception的方法 在网上看到的一种处理异常的方法 public abstract class Try<V> {private Try() {}public abstract Boolean isSuccess();public abstract Boolean isFailure();public abstract void throwException();public abstract Throwable getMe…

【UE HTTP】“BlueprintHTTP Server - A Web Server for Unreal Engine”插件使用记录

1. 在商城中下载“BlueprintHTTP Server - A Web Server for Unreal Engine”插件 该插件的主要功能有如下3点&#xff1a; &#xff08;1&#xff09;监听客户端请求。 &#xff08;2&#xff09;可以将文件直接从Unreal Engine应用程序提供到Web。 &#xff08;3&#xff…

Antd Vue项目引入TailwindCss之后出现svg icon下移,布局中的问题解决方案

目录 1. 现象&#xff1a; 2. 原因分析&#xff1a; 3. 解决方案&#xff1a; 写法一&#xff1a;扩展Preflight 写法二&#xff1a; 4. 禁用 Preflight 1. 现象&#xff1a; Antd Vue项目引入TailwindCss之后出现svg icon下移&#xff0c;不能对齐显示的情况&#xff0…

k8s笔记 | Prometheus安装

kube-prometheus 基于github安装 选择对应的版本 这里选择 https://github.com/prometheus-operator/kube-prometheus/tree/release-0.11 下载修改为国内镜像源 image: quay.io 改为 quay.mirrors.ustc.edu.cn image: k8s.gcr.io 改为 lank8s.cn 创建 prometheus-ingres…

在AndroidStudio创建虚拟手机DUB-AI20

1.DUB-AI20介绍 DUB-AL20是华为畅享9全网通机型。 华为畅享9采用基于Android 8.1定制的EMUI 8.2系统&#xff0c;最大的亮点是配置了1300万AI双摄、4000mAh大电池以及AI人脸识别功能&#xff0c;支持熄屏快拍、笑脸抓拍、声控拍照、手势拍照等特色的拍照功能&#xff0c;支持移…

Windows安装mingw32/w64

1.下载 MinGW-w64 WinLibs - GCCMinGW-w64 compiler for Windows Releases niXman/mingw-builds-binaries (github.com) MinGW-w64、UCRT 和 MSVCRT 是 Windows 平台上常用的 C/C 运行库&#xff0c;它们有以下不同点&#xff1a; MinGW-w64&#xff1a;是一个基于 GCC 的…

Edge浏览器报错:Ref A Ref B: Ref C

今天发现微软Edge浏览器非常频繁的出现以下报错&#xff1a;Ref A: 0BF6B9E03845450C8E6A6C31006AD7B9 Ref B: BJ1EDGE1116 Ref C: 2024-05-23T12:41:30Z 通过搜索发现用如下问题解决&#xff1a; 1.打开Edge浏览器 2.进入设置选项 3.找到隐私、搜索和服务 4.关闭跟踪防护后面…

【数据结构】【C语言】堆~动画超详细解读!

目录 1 什么是堆1.1 堆的逻辑结构和物理结构1.2 堆的访问1.3 堆为什么物理结构上要用数组?1.4 堆数据上的特点 2 堆的实现2.1 堆类型定义2.2 需要实现的接口2.3 初始化堆2.4 销毁堆2.5 堆判空2.6 交换函数2.7 向上调整(小堆)2.8 向下调整(小堆)2.9 堆插入2.10 堆删除2.11 //堆…