鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下)

本篇为快锁下篇,说清楚快锁在内核态的实现,解答以下问题,它们在上篇的末尾被提出来。

  • 鸿蒙内核进程池默认上限是64个,除去两个内核进程外,剩下的都归属用户进程,理论上用户进程可以创建很多快锁,这些快锁可以用于进程间(共享快锁)也可以用于线程间(私有快锁),在快锁的生命周期中该如何保存 ?
  • 无锁时,前面已经有进程在申请锁时,如何处理好新等锁进程和旧等锁进程的关系 ?
  • 释放锁时,需要唤醒已经在等锁的进程,唤醒的顺序由什么条件决定 ?

系列篇多次提过,线程在内核层面叫任务,在内核任务比进程重要得多,调度也好,竞争也罢,都是围绕任务展开的。竞争快锁是任务间的竞争,自然会和任务(task)有紧密的联系,其在内核的表达也出现在了任务表达之中。

typedef struct { // 任务控制块...LOS_DL_LIST     pendList;           /**< Task pend node | 如果任务阻塞时就通过它挂到各种阻塞情况的链表上,比如OsTaskWait时 */...FutexNode       futex;		///< 指明任务在等待哪把快锁,一次只等一锁,锁和任务的关系是(1:N)关系
} LosTaskCB;    

对 任务 不清楚的请翻看系列相关篇,一定要搞懂,它是内核最重要的概念,甚至没有之一,搞不懂任务就一定搞不懂内核整体的运行机制。

快锁节点 | 内核表达

FutexNode(快锁节点) 是快锁模块核心结构体,熟悉这块源码的钥匙。

typedef struct {UINTPTR      key;           /* private:uvaddr | 私有锁,用虚拟地址         shared:paddr | 共享锁,用物理地址 */UINT32       index;         /* hash bucket index | 哈希桶索引 OsFutexKeyToIndex */UINT32       pid;           /* private:process id   shared:OS_INVALID(-1) | 私有锁:进程ID     , 共享锁为 -1 */LOS_DL_LIST  pendList;      /* point to pendList in TCB struct | 指向 TCB 结构中的 pendList, 通过它找到任务*/LOS_DL_LIST  queueList;     /* thread list blocked by this lock | 挂等待这把锁的任务,其实这里挂到是FutexNode.queueList , 通过 queueList 可以找到 pendList ,通过 pendList又可以找到真正的任务*/LOS_DL_LIST  futexList;     /* point to the next FutexNode | 下一把快锁节点*/
} FutexNode;

解读

  • 首先要明白 快锁 和 快锁节点 的区别,否则看内核代码一定会懵圈,内核并没有快锁这个结构体,key就是快锁,它们的关系是 1:N 的关系 ,快锁分成了 私有锁 和 共享锁 两种类型。用key表示唯一性。共享锁用物理地址 , 私有锁用虚拟地址。为什么要这么做呢 ?
    • 私有锁的意思是进程私有,作用于同一个进程的不同任务间, 因为任务是共享进程空间的, 所以可以用虚拟地址来表示进程内的唯一性 。 但两个不同的进程会出现两个虚拟地址一样的快锁。
    • 共享锁的意思是进程共享,作用于不同进程的不同任务间,因为不同的进程都会有相同的虚拟地址范围, 所以不能用虚拟地址来表示唯一性 ,只能用物理地址。虚拟地址 : 物理地址 = N: 1,不清楚的请查看系列篇之内存映射相关篇。
  • index 内核使用哈希桶来检索快锁 , index 和 key的关系通过哈希算法(FNV-1a)来映射。注意会有同一个哈希桶中两个key一样的锁,虽然它会以极低概率出现。快锁的内核实现代码部分,个人觉得可以优化的空间很大,应好好测试下这块 ,说不定会有意想不到的 bug : ) 。
  • pid 指快锁节点进程归属,作用于私有锁。
  • pendList 指向 LosTaskCB.pendList, 通过它去唤醒和挂起任务,但并没有在源码中看到指向动作,如有看到的请告诉站长(wx: rekaily)。
  • queueList 具有相同key值的节点被queue_list串联起来表示被同一把锁阻塞的任务队列,意思就是queueList上面挂的都是等值为相同key的快锁,并按任务的优先级排好序。任务优先级高的可以先获取快锁使用权。
  • futexList 指向下一把快锁, 虽然挂的也是 FutexNode ,但是意义不一样 ! 是指queueList链表上的首个快锁节点,即不同key的快锁。能理解吗 ? 好吧 ,我承认这里面有点绕 。

哈希桶 | 管理快锁

当用户态产生锁的竞争或释放需要进行相关线程的调度操作时,会触发Futex系统调用进入内核,此时会将用户态锁的地址传入内核,并在内核的Futex中以锁地址来区分用户态的每一把锁,因为用户态可用虚拟地址空间为1GiB,为了便于查找、管理,内核Futex采用哈希桶来存放用户态传入的锁。

哈希桶共有80个,0~63 号桶用于存放私有锁(以虚拟地址进行哈希),64~79号桶用于存放共享锁(以物理地址进行哈希),所有相同的 key都掉进了同一个桶里。私有/共享属性通过用户态锁的初始化以及Futex系统调用入参确定。

#define FUTEX_INDEX_PRIVATE_MAX     64	///< 0~63号桶用于存放私有锁(以虚拟地址进行哈希),同一进程不同线程共享futex变量,表明变量在进程地址空间中的位置
///< 它告诉内核,这个futex是进程专有的,不可以与其他进程共享。它仅仅用作同一进程的线程间同步。
#define FUTEX_INDEX_SHARED_MAX      16	///< 64~79号桶用于存放共享锁(以物理地址进行哈希),不同进程间通过文件共享futex变量,表明该变量在文件中的位置
#define FUTEX_INDEX_MAX             (FUTEX_INDEX_PRIVATE_MAX + FUTEX_INDEX_SHARED_MAX) ///< 80个哈希桶
#define FUTEX_INDEX_SHARED_POS      FUTEX_INDEX_PRIVATE_MAX ///< 共享锁开始位置
FutexHash g_futexHash[FUTEX_INDEX_MAX];///< 默认80个哈希桶typedef struct {LosMux      listLock;///< 内核操作lockList的互斥锁LOS_DL_LIST lockList;///< 用于挂载 FutexNode (Fast userspace mutex,用户态快速互斥锁)
} FutexHash;

下图来源于官方文档,基本能准确的描述管理方式,暂且使用此图(后续可能重画) , 有了这张图理解上面FutexNode会更轻松

任务调度

  • 无锁时就需要将当前任务挂起,可详细跟踪函数OsFutexWaitTask,无非就是根据任务的优先级调整queueList futexList queueList 这些链表上的位置

    /// 将当前任务挂入等待链表中
    STATIC INT32 OsFutexWaitTask(const UINT32 *userVaddr, const UINT32 flags, const UINT32 val, const UINT32 timeOut)
    {INT32 futexRet;UINT32 intSave, lockVal;LosTaskCB *taskCB = NULL;FutexNode *node = NULL;UINTPTR futexKey = OsFutexFlagsToKey(userVaddr, flags);//通过地址和flags 找到 keyUINT32 index = OsFutexKeyToIndex(futexKey, flags);//通过key找到哈希桶FutexHash *hashNode = &g_futexHash[index];if (OsFutexLock(&hashNode->listLock)) {//操作快锁节点链表前先上互斥锁return LOS_EINVAL;}//userVaddr必须是用户空间虚拟地址if (LOS_ArchCopyFromUser(&lockVal, userVaddr, sizeof(UINT32))) {//将值拷贝到内核空间PRINT_ERR("Futex wait param check failed! copy from user failed!\n");futexRet = LOS_EINVAL;goto EXIT_ERR;}if (lockVal != val) {//对参数内部逻辑检查futexRet = LOS_EBADF;goto EXIT_ERR;}//注意第二个参数 FutexNode *node = NULL if (OsFutexInsertTaskToHash(&taskCB, &node, futexKey, flags)) {// node = taskCB->futexfutexRet = LOS_NOK;goto EXIT_ERR;}SCHEDULER_LOCK(intSave);OsTaskWaitSetPendMask(OS_TASK_WAIT_FUTEX, futexKey, timeOut);OsSchedTaskWait(&(node->pendList), timeOut, FALSE);OsSchedLock();LOS_SpinUnlock(&g_taskSpin);futexRet = OsFutexUnlock(&hashNode->listLock);//if (futexRet) {OsSchedUnlock();LOS_IntRestore(intSave);goto EXIT_UNLOCK_ERR;}LOS_SpinLock(&g_taskSpin);OsSchedUnlock();/** it will immediately do the scheduling, so there's no need to release the* task spinlock. when this task's been rescheduled, it will be holding the spinlock.*/OsSchedResched();if (taskCB->taskStatus & OS_TASK_STATUS_TIMEOUT) {taskCB->taskStatus &= ~OS_TASK_STATUS_TIMEOUT;SCHEDULER_UNLOCK(intSave);return OsFutexDeleteTimeoutTaskNode(hashNode, node);}SCHEDULER_UNLOCK(intSave);return LOS_OK;EXIT_ERR:(VOID)OsFutexUnlock(&hashNode->listLock);
    EXIT_UNLOCK_ERR:return futexRet;
    }
  • 释放锁时就需要将queueList上挂起任务唤醒,可详细跟踪函数OsFutexWaitTask,如果没有任务再等锁了就DeleteKey

    STATIC INT32 OsFutexWakeTask(UINTPTR futexKey, UINT32 flags, INT32 wakeNumber, FutexNode **newHeadNode, BOOL *wakeAny){UINT32 intSave;FutexNode *node = NULL;FutexNode *headNode = NULL;UINT32 index = OsFutexKeyToIndex(futexKey, flags);FutexHash *hashNode = &g_futexHash[index];FutexNode tempNode = { //先组成一个临时快锁节点,目的是为了找到哈希桶中是否有这个节点.key = futexKey,.index = index,.pid = (flags & FUTEX_PRIVATE) ? LOS_GetCurrProcessID() : OS_INVALID,};node = OsFindFutexNode(&tempNode);//找快锁节点if (node == NULL) {return LOS_EBADF;}headNode = node;SCHEDULER_LOCK(intSave);OsFutexCheckAndWakePendTask(headNode, wakeNumber, hashNode, newHeadNode, wakeAny);//再找到等这把锁的唤醒指向数量的任务if ((*newHeadNode) != NULL) {OsFutexReplaceQueueListHeadNode(headNode, *newHeadNode);OsFutexDeinitFutexNode(headNode);} else if (headNode->index < FUTEX_INDEX_MAX) {OsFutexDeleteKeyFromFutexList(headNode);OsFutexDeinitFutexNode(headNode);}SCHEDULER_UNLOCK(intSave);return LOS_OK;}
    

鸿蒙全栈开发全新学习指南

也为了积极培养鸿蒙生态人才,让大家都能学习到鸿蒙开发最新的技术,针对一些在职人员、0基础小白、应届生/计算机专业、鸿蒙爱好者等人群,整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线【包含了大厂APP实战项目开发】

本路线共分为四个阶段:

第一阶段:鸿蒙初中级开发必备技能

在这里插入图片描述

第二阶段:鸿蒙南北双向高工技能基础:gitee.com/MNxiaona/733GH

第三阶段:应用开发中高级就业技术

第四阶段:全网首发-工业级南向设备开发就业技术:gitee.com/MNxiaona/733GH

《鸿蒙 (Harmony OS)开发学习手册》(共计892页)

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

开发基础知识:gitee.com/MNxiaona/733GH

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

鸿蒙开发面试真题(含参考答案):gitee.com/MNxiaona/733GH

鸿蒙入门教学视频:

美团APP实战开发教学:gitee.com/MNxiaona/733GH

写在最后

  • 如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往小编:gitee.com/MNxiaona/733GH

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/11670.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Unity从零开始学习制作手机游戏】第01节:控制3D胶囊体运动

1. 新建Project L01 使用3D Mobile模板。 2. 建立一个平面&#xff0c;用来承载物体 3. 导入Unity库内的胶囊体 下载 StandardAssets https://download.unitychina.cn/download_unity/e80cc3114ac1/WindowsStandardAssetsInstaller/UnityStandardAssetsSetup-5.6.7f1.exe …

RobbitMQ基本消息队列的消息接收

1.先给工程引入依赖 父工程有了子工程就不用导了 <!--AMQP依赖&#xff0c;包含RabbitMQ--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> </dependency> 2.配置yml…

未来相遇过去:博物馆藏品管理平台的科技革新之旅

引言&#xff1a; 尊重历史&#xff0c;意味着保护其实体的载体。在博物馆这个时间的容器中&#xff0c;每一件藏品都承载着人类文明的印记&#xff0c;它们是历史的低语&#xff0c;是过去对现在的细语。在这篇文章中&#xff0c;我将带您走进博物馆的幕后&#xff0c;探究藏品…

/proc/modules文件

/proc/modules文件中列出了内核加载的所有模块的信息&#xff0c;与使用lsmod命令类似。 第一列&#xff1a;模块名称 第二列&#xff1a;模块使用的内存大小&#xff0c;单位是bytes 第三列&#xff1a;模块被load的次数 第四列&#xff1a;是否有其他模块依赖此模块&#…

Windows:管理用户账户,密码策略和安全配置

在Windows操作系统中&#xff0c;管理用户账户和密码策略是确保系统安全的关键步骤。本文将探讨如何通过PowerShell和其他Windows工具管理用户账户&#xff0c;包括查看和设置密码策略、检查用户状态&#xff0c;以及导出和导入安全策略。这些管理任务对于系统管理员尤其重要&a…

Spring框架核心:揭秘Java厨房的智能烹饪艺术

前情回顾&#xff1a;Spring框架深度解析&#xff1a;打造你的Java应用梦工厂 六. 实现控制反转 6.1 描述如何在Spring中实现IoC 在Spring Town的厨房里&#xff0c;实现控制反转就像是将食材的采购和准备过程外包给了一个智能系统。这个系统知道每种食材的特性&#xff0c;也…

Kubernetes——两万字超细致集群搭建平台规划

目录 前言——常见的K8S安装部署方式 一、Kubernetes平台规划 1.单Master集群架构 2.多Master集群架构 二、集群规划 1.服务器硬件配置推荐 2.操作系统初始化 2.1关闭防火墙 2.2关闭SElinux 2.3关闭Swap 2.4添加Hosts 2.5调整内核参数 2.5同步时间 三、集群搭建…

QT ERROR: Unknown module(s) in QT: xlsx怎么办

现象描述 QT编译c代码的时候&#xff0c;报这种QT ERROR: Unknown module(s) in QT: xlsx&#xff0c;应该如何解决&#xff1f; 这里&#xff0c;我简单记录一下自己的解决问题过程。有可能&#xff0c;对遇到同样的问题的你&#xff0c;也有所帮助 第一步 检查perl是否安装…

浅析扩散模型与图像生成【应用篇】(二十四)——Text2Live

24. Text2LIVE : Text-Driven Layered Image and Video Editing 本文提出一种文本驱动的图像和视频编辑方法。与其他方法直接对图像进行编辑的方式不同&#xff0c;本文提出的方法并不是基于扩散模型的&#xff0c;更像是一个自编码器&#xff0c;通过对原图编码解码输出一个新…

华为OD机试 - 掌握的单词个数 - 回溯(Java 2024 C卷 100分)

华为OD机试 2024C卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(A卷+B卷+C卷)》。 刷的越多,抽中的概率越大,每一题都有详细的答题思路、详细的代码注释、样例测试,发现新题目,随时更新,全天CSDN在线答疑。 一、题目描述 有一个字符…

通过ip addr命令无法获取到ip地址,无法ping通百度

问题 今天通过VM安装CentOS虚拟机时&#xff0c;安装完成后&#xff0c;想查看ip地址&#xff0c;使用ip addr命令&#xff0c;发现没有展示网络ip地址&#xff0c;ping百度也不通。 解决方案 CentOS使用网络配置文件来设置网络接口的参数&#xff0c;出现这个问题说明网络的…

物联网设计竞赛_3_Jetson Nano连接摄像头

ls /dev/video* 查看是否有摄像头 camorama 开启摄像头 关闭摄像头用&#xff1a; ctr c结束进程 若有camorama被启动用ps aux 或者 ps aux l grep camorama 找到对应进程用 kill -9 <PID>杀死进程再启动 必要的时候也能重启系统再试试&#xff1a; shutdown -r …

Windows2016系统禁止关闭系统自动更新教程

目录 1.输入cmd--适合系统2016版本2.输入sconfig&#xff0c;然后按回车键3.输入5&#xff0c;然后按回车键4.示例需要设置为手动更新&#xff0c;即输入M&#xff0c;然后按回车键 1.输入cmd–适合系统2016版本 2.输入sconfig&#xff0c;然后按回车键 3.输入5&#xff0c;然后…

半个小时搞懂STM32面经知识——DMA

1.DMA 1.1 什么是DMA&#xff1f; DMA传输将数据从一个地址空间复制到另一个地址空间&#xff0c;提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。 CPU无时不刻的在处理着大量的事务&#xff0c;但有些事情却没有那么重要&#xff0c;比方说数据的复制和存储数…

LLM实战:LLM微调加速神器-Unsloth + LLama3

1. 背景 五一结束后&#xff0c;本qiang~又投入了LLM的技术海洋中&#xff0c;本期将给大家带来LLM微调神器&#xff1a;Unsloth。 正如Unsloth官方的对外宣贯&#xff1a;Easily finetune & train LLMs; Get faster with unsloth。微调训练LLM&#xff0c;可以显著提升速…

kafka 图形化

介绍 idea 中的一个插件 kafkalytic,kafka 图形化 简单又强大 安装 使用界面 总体信息 数据查看

JDK的串行收集器介绍与优化指南-02

对象的生命周期 对象的生命周期 在Java中,对象的生命周期通常包括以下几个阶段,这些阶段与JVM的内存管理和垃圾收集机制密切相关。 创建阶段 (1)为对象分配存储空间:当使用new关键字或其他方式(如反射、克隆、反序列化等)创建一个对象时,JVM首先会在堆内存中为其分配…

004.可观察对象与观察者

Rx非常适合事件驱动的应用程序。这是有意义的&#xff0c;因为事件(作为)(如前所述)是创建时变值的命令式方法。从历史上看,事件驱动编程主要出现在客户端技术中&#xff0c;因为作为事件实现的用户交互。例如&#xff0c;你可能工作过使用OnMouseMove或OnKeyPressed事件。正因…

“智慧食堂”|基于Springboot+vue的“智慧食堂”系统(源码+数据库+文档)

“智慧食堂”系统 目录 基于Springbootvue的“智慧食堂”系统 一、前言 二、系统设计 三、系统功能设计 1功能页面实现 2系统功能模块 3管理员功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主介绍…

缩短项目周期:SOLIDWORKS Electrical简化了电气设计过程

在现代工业设计领域&#xff0c;电气系统设计的复杂性日益增加&#xff0c;然而&#xff0c;达索系统SOLIDWORKS Electrical软件的出现为这一挑战提供了高效的解决方案。该软件支持工程师通过选配的方式快速设计原理图&#xff0c;这极大地简化了电气设计过程&#xff0c;并有效…